eviCore healthcare Clinical Decision Support Tool Diagnostic Strategies: This tool addresses common symptoms and symptom complexes. Imaging requests for patients with atypical symptoms or clinical presentations that are not specifically addressed will require physician review. Consultation with the referring physician, specialist and/or patient’s Primary Care Physician (PCP) may provide additional insight.

PEDIATRIC ONCOLOGY IMAGING GUIDELINES
Version 19.0; Effective 11-1-2016

This version incorporates accepted revisions prior to 12/31/16

CPT® (Current Procedural Terminology) is a registered trademark of the American Medical Association (AMA). CPT® five digit codes, nomenclature and other data are copyright 2016 American Medical Association. All Rights Reserved. No fee schedules, basic units, relative values or related listings are included in the CPT® book. AMA does not directly or indirectly practice medicine or dispense medical services. AMA assumes no liability for the data contained herein or not contained herein.

©2016 eviCore healthcare

Pediatric Oncology Imaging Guidelines
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBREVIATIONS ... 3</td>
</tr>
<tr>
<td>PROCEDURE CODES .. 4</td>
</tr>
<tr>
<td>PEDONC-1~GENERAL GUIDELINES .. 10</td>
</tr>
<tr>
<td>PEDONC-2~SCREENING IMAGING IN CANCER PREDISPOSITION SYNDROMES ... 21</td>
</tr>
<tr>
<td>PEDONC 3~PEDIATRIC LEUKEMIAS ... 36</td>
</tr>
<tr>
<td>PEDONC-4~PEDIATRIC CNS TUMORS ... 41</td>
</tr>
<tr>
<td>PEDONC-5~PEDIATRIC LYMPHOMAS .. 64</td>
</tr>
<tr>
<td>PEDONC-6~NEUROBLASTOMA .. 72</td>
</tr>
<tr>
<td>PEDONC-7~PEDIATRIC RENAL TUMORS ... 80</td>
</tr>
<tr>
<td>PEDONC-8~PEDIATRIC SOFT TISSUE SARCOMAS .. 91</td>
</tr>
<tr>
<td>PEDONC-9~BONE TUMORS ... 99</td>
</tr>
<tr>
<td>PEDONC-10~PEDIATRIC GERM CELL TUMORS ... 109</td>
</tr>
<tr>
<td>PEDONC-11~PEDIATRIC LIVER TUMORS ... 112</td>
</tr>
<tr>
<td>PEDONC-12~RETINOBLASTOMA .. 118</td>
</tr>
<tr>
<td>PEDONC-13~PEDIATRIC NASOPHARYNGEAL CARCINOMA .. 121</td>
</tr>
<tr>
<td>PEDONC-14~PEDIATRIC ADRENOCORTICAL CARCINOMA ... 124</td>
</tr>
<tr>
<td>PEDONC-15~PEDIATRIC MELANOMA AND OTHER SKIN CANCERS .. 127</td>
</tr>
<tr>
<td>PEDONC-16~PEDIATRIC SALIVARY GLAND TUMORS .. 128</td>
</tr>
<tr>
<td>PEDONC-17~PEDIATRIC BREAST MASSES ... 129</td>
</tr>
<tr>
<td>PEDONC-18~PEDIATRIC HISTIOCYTIC DISORDERS .. 130</td>
</tr>
<tr>
<td>PEDONC-19~LONG TERM PEDIATRIC CANCER SURVIVORS ... 138</td>
</tr>
</tbody>
</table>
ABBREVIATIONS for PEDIATRIC ONCOLOGY IMAGING GUIDELINES

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFP</td>
<td>Alpha-fetoprotein (tumor marker)</td>
</tr>
<tr>
<td>ALCL</td>
<td>Anaplastic Large Cell Lymphoma</td>
</tr>
<tr>
<td>ALL</td>
<td>Acute Lymphoblastic Leukemia</td>
</tr>
<tr>
<td>AML</td>
<td>Acute Myelogenous Leukemia</td>
</tr>
<tr>
<td>β-hCG</td>
<td>Human chorionic gonadotropin beta-subunit (tumor marker)</td>
</tr>
<tr>
<td>BKL</td>
<td>Burkitt’s lymphoma</td>
</tr>
<tr>
<td>BWT</td>
<td>Bilateral Wilms tumor</td>
</tr>
<tr>
<td>CCSK</td>
<td>Clear Cell Sarcoma of the Kidney</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>COG</td>
<td>Children’s Oncology Group</td>
</tr>
<tr>
<td>CPT®</td>
<td>Current Procedural Terminology; trademark of the American Medical Association</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>CXR</td>
<td>Chest x-ray</td>
</tr>
<tr>
<td>DAWT</td>
<td>Diffuse anaplasia Wilms tumor</td>
</tr>
<tr>
<td>ESFT</td>
<td>Ewing Sarcoma Family of Tumors</td>
</tr>
<tr>
<td>FAWT</td>
<td>Focal anaplasia Wilms tumor</td>
</tr>
<tr>
<td>FHWT</td>
<td>Favorable histology Wilms tumor</td>
</tr>
<tr>
<td>HL</td>
<td>Hodgkin lymphoma</td>
</tr>
<tr>
<td>HSCT</td>
<td>Hematopoietic stem cell transplant (bone marrow or peripheral blood)</td>
</tr>
<tr>
<td>HVA</td>
<td>Homovanillic acid</td>
</tr>
<tr>
<td>LL</td>
<td>Lymphoblastic lymphoma</td>
</tr>
<tr>
<td>MIBG</td>
<td>Metaiodobenzylguanidine (nuclear scan using 123I or 131I)</td>
</tr>
<tr>
<td>MPNST</td>
<td>Malignant peripheral nerve sheath tumor</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>NBL</td>
<td>Neuroblastoma</td>
</tr>
<tr>
<td>NED</td>
<td>No evidence of disease</td>
</tr>
<tr>
<td>NHL</td>
<td>Non-Hodgkin lymphoma</td>
</tr>
<tr>
<td>NPC</td>
<td>Nasopharyngeal carcinoma</td>
</tr>
<tr>
<td>NRSTS</td>
<td>Nonrhabdomyosarcomatous soft tissue sarcomas</td>
</tr>
<tr>
<td>OS</td>
<td>Osteosarcoma</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>PMBCL</td>
<td>Primary mediastinal B-cell lymphoma</td>
</tr>
<tr>
<td>PNET</td>
<td>Primitive neuroectodermal tumor</td>
</tr>
<tr>
<td>RCC</td>
<td>Renal cell carcinoma</td>
</tr>
<tr>
<td>RMS</td>
<td>Rhabdomyosarcoma</td>
</tr>
<tr>
<td>US</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>VMA</td>
<td>Vannilylmandelic acid</td>
</tr>
<tr>
<td>WBC</td>
<td>White blood cell count</td>
</tr>
<tr>
<td>XRT</td>
<td>Radiation therapy</td>
</tr>
</tbody>
</table>
Procedure Codes Associated with Oncology Imaging

<table>
<thead>
<tr>
<th>MRI</th>
<th>CPT®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain MRI without contrast</td>
<td>70551</td>
</tr>
<tr>
<td>Brain MRI with contrast (rarely used)</td>
<td>70552</td>
</tr>
<tr>
<td>Brain MRI without and with contrast</td>
<td>70553</td>
</tr>
<tr>
<td>Functional MRI Brain not requiring physician or psychologist</td>
<td>70554</td>
</tr>
<tr>
<td>Functional MRI Brain requiring physician or psychologist</td>
<td>70555</td>
</tr>
<tr>
<td>MR Spectroscopy</td>
<td>76390</td>
</tr>
<tr>
<td>Orbit, Face, Neck MRI without contrast</td>
<td>70540</td>
</tr>
<tr>
<td>Orbit, Face, Neck MRI with contrast (rarely used)</td>
<td>70542</td>
</tr>
<tr>
<td>Orbit, Face, Neck MRI without and with contrast</td>
<td>70543</td>
</tr>
<tr>
<td>Cardiac MRI without contrast</td>
<td>75557</td>
</tr>
<tr>
<td>Cardiac MRI without and with contrast</td>
<td>75561</td>
</tr>
<tr>
<td>Chest MRI without contrast</td>
<td>71550</td>
</tr>
<tr>
<td>Chest MRI with contrast (rarely used)</td>
<td>71551</td>
</tr>
<tr>
<td>Chest MRI without and with contrast</td>
<td>71552</td>
</tr>
<tr>
<td>Abdomen MRI without contrast</td>
<td>74181</td>
</tr>
<tr>
<td>Abdomen MRI with contrast (rarely used)</td>
<td>74182</td>
</tr>
<tr>
<td>Abdomen MRI without and with contrast</td>
<td>74183</td>
</tr>
<tr>
<td>Pelvis MRI without contrast</td>
<td>72195</td>
</tr>
<tr>
<td>Pelvis MRI with contrast (rarely used)</td>
<td>72196</td>
</tr>
<tr>
<td>Pelvis MRI without and with contrast</td>
<td>72197</td>
</tr>
<tr>
<td>Cervical MRI without contrast</td>
<td>72141</td>
</tr>
<tr>
<td>Cervical MRI with contrast</td>
<td>72142</td>
</tr>
<tr>
<td>Cervical MRI without and with contrast</td>
<td>72156</td>
</tr>
<tr>
<td>Brachial plexus MRI without contrast (unilateral)</td>
<td>73218</td>
</tr>
<tr>
<td>Brachial plexus MRI without and with contrast (unilateral)</td>
<td>73220</td>
</tr>
<tr>
<td>Brachial plexus MRI without contrast (bilateral)</td>
<td>71550</td>
</tr>
<tr>
<td>Brachial plexus MRI without and with contrast (bilateral)</td>
<td>71552</td>
</tr>
<tr>
<td>Thoracic MRI without contrast</td>
<td>72146</td>
</tr>
<tr>
<td>Procedure Description</td>
<td>Code</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Thoracic MRI with contrast</td>
<td>72147</td>
</tr>
<tr>
<td>Thoracic MRI without and with contrast</td>
<td>72157</td>
</tr>
<tr>
<td>Lumbar MRI without contrast</td>
<td>72148</td>
</tr>
<tr>
<td>Lumbar MRI with contrast</td>
<td>72149</td>
</tr>
<tr>
<td>Lumbar MRI without and with contrast</td>
<td>72158</td>
</tr>
<tr>
<td>Upper Extremity MRI non-joint without contrast</td>
<td>73218</td>
</tr>
<tr>
<td>Upper Extremity MRI non-joint with contrast (rarely used)</td>
<td>73219</td>
</tr>
<tr>
<td>Upper Extremity MRI non-joint without and with contrast</td>
<td>73220</td>
</tr>
<tr>
<td>Upper Extremity MRI joint without contrast</td>
<td>73221</td>
</tr>
<tr>
<td>Upper Extremity MRI joint with contrast (rarely used)</td>
<td>73222</td>
</tr>
<tr>
<td>Upper Extremity MRI joint without and with contrast</td>
<td>73223</td>
</tr>
<tr>
<td>Lower Extremity MRI non-joint without contrast</td>
<td>73718</td>
</tr>
<tr>
<td>Lower Extremity MRI non-joint with contrast (rarely used)</td>
<td>73719</td>
</tr>
<tr>
<td>Lower Extremity MRI non-joint without and with contrast</td>
<td>73720</td>
</tr>
<tr>
<td>Lower Extremity MRI joint without contrast</td>
<td>73721</td>
</tr>
<tr>
<td>Lower Extremity MRI joint with contrast (rarely used)</td>
<td>73722</td>
</tr>
<tr>
<td>Lower Extremity MRI joint without and with contrast</td>
<td>73723</td>
</tr>
<tr>
<td>Unlisted MRI procedure (for radiation planning or surgical software)</td>
<td>76498</td>
</tr>
<tr>
<td>MRA</td>
<td>CPT®</td>
</tr>
<tr>
<td>Head MRA without contrast</td>
<td>70544</td>
</tr>
<tr>
<td>Head MRA with contrast</td>
<td>70545</td>
</tr>
<tr>
<td>Head MRA without and with contrast</td>
<td>70546</td>
</tr>
<tr>
<td>Neck MRA without contrast</td>
<td>70547</td>
</tr>
<tr>
<td>Neck MRA with contrast</td>
<td>70548</td>
</tr>
<tr>
<td>Neck MRA without and with contrast</td>
<td>70549</td>
</tr>
<tr>
<td>Chest MRA (non-cardiac)</td>
<td>71555</td>
</tr>
<tr>
<td>Abdomen MRA</td>
<td>74185</td>
</tr>
<tr>
<td>Pelvis MRA</td>
<td>72198</td>
</tr>
<tr>
<td>Upper Extremity MRA</td>
<td>73225</td>
</tr>
<tr>
<td>Lower Extremity MRA</td>
<td>73725</td>
</tr>
<tr>
<td>CT</td>
<td>CPT®</td>
</tr>
<tr>
<td>Head CT without contrast</td>
<td>70450</td>
</tr>
<tr>
<td>Head CT with contrast</td>
<td>70460</td>
</tr>
<tr>
<td>Procedure Description</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Head CT without and with contrast</td>
<td>70470</td>
</tr>
<tr>
<td>Orbits CT without contrast (includes temporal bone and mastoid)</td>
<td>70480</td>
</tr>
<tr>
<td>Orbits CT with contrast (includes temporal bone and mastoid)</td>
<td>70481</td>
</tr>
<tr>
<td>Orbits CT without and with contrast (includes temporal bone and mastoid)</td>
<td>70482</td>
</tr>
<tr>
<td>Maxillofacial CT without contrast (includes sinuses, jaw, and mandible)</td>
<td>70486</td>
</tr>
<tr>
<td>Maxillofacial CT with contrast (includes sinuses, jaw, and mandible)</td>
<td>70487</td>
</tr>
<tr>
<td>Maxillofacial CT without and with contrast (includes sinuses, jaw, and mandible)</td>
<td>70488</td>
</tr>
<tr>
<td>Neck CT without contrast (includes jaw, and mandible)</td>
<td>70490</td>
</tr>
<tr>
<td>Neck CT with contrast (includes jaw, and mandible)</td>
<td>70491</td>
</tr>
<tr>
<td>Neck CT without and with contrast (includes jaw, and mandible)</td>
<td>70492</td>
</tr>
<tr>
<td>Heart CT with contrast for structure and morphology</td>
<td>75572</td>
</tr>
<tr>
<td>Heart CT with contrast for structure and morphology, for congenital heart disease</td>
<td>75573</td>
</tr>
<tr>
<td>Heart CT with contrast for coronary arteries & bypass grafts</td>
<td>75574</td>
</tr>
<tr>
<td>Chest CT without contrast</td>
<td>71250</td>
</tr>
<tr>
<td>Chest CT with contrast</td>
<td>71260</td>
</tr>
<tr>
<td>Chest CT without and with contrast (rarely used)</td>
<td>71270</td>
</tr>
<tr>
<td>Abdomen CT without contrast</td>
<td>74150</td>
</tr>
<tr>
<td>Abdomen CT with contrast</td>
<td>74160</td>
</tr>
<tr>
<td>Abdomen CT without and with contrast</td>
<td>74170</td>
</tr>
<tr>
<td>Abdomen/Pelvis CT without contrast</td>
<td>74176</td>
</tr>
<tr>
<td>Abdomen/Pelvis CT with contrast</td>
<td>74177</td>
</tr>
<tr>
<td>Abdomen/Pelvis CT without and with contrast</td>
<td>74178</td>
</tr>
<tr>
<td>Pelvis CT without contrast</td>
<td>72192</td>
</tr>
<tr>
<td>Pelvis CT with contrast</td>
<td>72193</td>
</tr>
<tr>
<td>Pelvis CT without and with contrast</td>
<td>72194</td>
</tr>
<tr>
<td>Cervical CT without contrast</td>
<td>72125</td>
</tr>
<tr>
<td>Cervical CT with contrast</td>
<td>72126</td>
</tr>
<tr>
<td>Cervical CT without and with contrast</td>
<td>72127</td>
</tr>
<tr>
<td>Thoracic CT without contrast</td>
<td>72128</td>
</tr>
<tr>
<td>Thoracic CT with contrast</td>
<td>72129</td>
</tr>
<tr>
<td>Thoracic CT without and with contrast</td>
<td>72130</td>
</tr>
<tr>
<td>Lumbar CT without contrast</td>
<td>72131</td>
</tr>
<tr>
<td>Lumbar CT with contrast</td>
<td>72132</td>
</tr>
<tr>
<td>Procedure</td>
<td>CPT Code</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Lumbar CT without and with contrast</td>
<td>72133</td>
</tr>
<tr>
<td>Upper Extremity CT without contrast</td>
<td>73200</td>
</tr>
<tr>
<td>Upper Extremity CT with contrast</td>
<td>73201</td>
</tr>
<tr>
<td>Upper Extremity CT without and with contrast</td>
<td>73202</td>
</tr>
<tr>
<td>Lower Extremity CT without contrast</td>
<td>73700</td>
</tr>
<tr>
<td>Lower Extremity CT with contrast</td>
<td>73701</td>
</tr>
<tr>
<td>Lower Extremity CT without and with contrast</td>
<td>73702</td>
</tr>
<tr>
<td>Bone Mineral Density CT, one or more sites, axial skeleton</td>
<td>77078</td>
</tr>
<tr>
<td>Bone Mineral Density CT, one or more sites, appendicular skeleton</td>
<td>77079</td>
</tr>
<tr>
<td>CT Guidance for Stereotactic Localization (used for sinus surgery planning)</td>
<td>77011</td>
</tr>
<tr>
<td>CT Guidance for Needle Placement (Biopsy, Aspiration, Injection, etc.)</td>
<td>77012</td>
</tr>
<tr>
<td>CT Guidance for and monitoring of Visceral Tissue Ablation</td>
<td>77013</td>
</tr>
<tr>
<td>CT Guidance for Placement of Radiation Therapy Fields</td>
<td>77014</td>
</tr>
<tr>
<td>Unlisted CT procedure (for radiation planning or surgical software)</td>
<td>76497</td>
</tr>
<tr>
<td>CTA</td>
<td>CPT®</td>
</tr>
<tr>
<td>Head CTA</td>
<td>70496</td>
</tr>
<tr>
<td>Neck CTA</td>
<td>70498</td>
</tr>
<tr>
<td>Abdomen CTA</td>
<td>74175</td>
</tr>
<tr>
<td>Abdomen/Pelvis CTA</td>
<td>74174</td>
</tr>
<tr>
<td>Pelvis CTA</td>
<td>72191</td>
</tr>
<tr>
<td>Upper Extremity CTA</td>
<td>73206</td>
</tr>
<tr>
<td>Lower Extremity CTA</td>
<td>73706</td>
</tr>
<tr>
<td>Nuclear Medicine</td>
<td>CPT®</td>
</tr>
<tr>
<td>PET Brain Metabolic Evaluation</td>
<td>78608</td>
</tr>
<tr>
<td>PET Imaging; limited area (this code not used in pediatrics)</td>
<td>78811</td>
</tr>
<tr>
<td>PET Imaging; skull base to mid-thigh (this code not used in pediatrics)</td>
<td>78812</td>
</tr>
<tr>
<td>PET Imaging; whole body (this code not used in pediatrics)</td>
<td>78813</td>
</tr>
<tr>
<td>PET with concurrently acquired CT; limited area (this code rarely used in pediatrics)</td>
<td>78814</td>
</tr>
<tr>
<td>PET with concurrently acquired CT; skull base to mid-thigh</td>
<td>78815</td>
</tr>
<tr>
<td>PET with concurrently acquired CT; whole body</td>
<td>78816</td>
</tr>
<tr>
<td>Lymph System Imaging (Lymphoscintigraphy)</td>
<td>78195</td>
</tr>
<tr>
<td>Radiopharmaceutical Localization of Tumor Limited Area</td>
<td>78800</td>
</tr>
<tr>
<td>Radiopharmaceutical Localization of Tumor Multiple Areas</td>
<td>78801</td>
</tr>
<tr>
<td>Procedure</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Radiopharmaceutical Localization of Tumor Whole Body Single Day Study</td>
<td>78802</td>
</tr>
<tr>
<td>Radiopharmaceutical Localization of Tumor SPECT</td>
<td>78803</td>
</tr>
<tr>
<td>Radiopharmaceutical Localization of Tumor Whole Body Two or More Days</td>
<td>78804</td>
</tr>
<tr>
<td>Bone Marrow Imaging Limited Areas</td>
<td>78102</td>
</tr>
<tr>
<td>Bone Marrow Imaging Multiple Areas</td>
<td>78103</td>
</tr>
<tr>
<td>Bone Marrow Imaging Whole Body</td>
<td>78104</td>
</tr>
<tr>
<td>Nuclear Bone Scan Limited</td>
<td>78300</td>
</tr>
<tr>
<td>Nuclear Bone Scan Multiple Areas</td>
<td>78305</td>
</tr>
<tr>
<td>Nuclear Bone Scan Whole Body</td>
<td>78306</td>
</tr>
<tr>
<td>Nuclear Bone Scan SPECT</td>
<td>78320</td>
</tr>
<tr>
<td>Radiopharmaceutical Imaging of Inflammatory Process Limited Area</td>
<td>78805</td>
</tr>
<tr>
<td>Radiopharmaceutical Imaging of Inflammatory Process Whole Body</td>
<td>78806</td>
</tr>
<tr>
<td>Radiopharmaceutical Imaging of Inflammatory Process SPECT</td>
<td>78807</td>
</tr>
<tr>
<td>DEXA Bone Densitometry, axial skeleton</td>
<td>77080</td>
</tr>
<tr>
<td>DEXA Bone Densitometry, peripheral skeleton</td>
<td>77081</td>
</tr>
<tr>
<td>CSF Flow SPECT</td>
<td>78647</td>
</tr>
<tr>
<td>CSF Leakage Detection</td>
<td>78650</td>
</tr>
<tr>
<td>Salivary Gland Function Study</td>
<td>78232</td>
</tr>
<tr>
<td>Gated Cardiac Radionuclide Angiography</td>
<td>78472</td>
</tr>
<tr>
<td>Gated Multiple Cardiac Radionuclide Angiography</td>
<td>78473</td>
</tr>
<tr>
<td>Planar First Pass Cardiac Radionuclide Angiography</td>
<td>78481</td>
</tr>
<tr>
<td>Planar First Pass Multiple Cardiac Radionuclide Angiography</td>
<td>78483</td>
</tr>
<tr>
<td>SPECT Equilibrium Cardiac Radionuclide Angiography</td>
<td>78494</td>
</tr>
<tr>
<td>SPECT Equilibrium Multiple Cardiac Radionuclide Angiography</td>
<td>78496</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>CPT®</td>
</tr>
<tr>
<td>Echocardiography, transthoracic, real time with image documentation (2D), includes M-mode recording, when performed, complete, with spectral Doppler echocardiography, and with color flow Doppler echocardiography</td>
<td>93306</td>
</tr>
<tr>
<td>Ultrasound, chest (includes mediastinum, chest wall, and upper back)</td>
<td>76604</td>
</tr>
<tr>
<td>Ultrasound, axilla</td>
<td>76882</td>
</tr>
<tr>
<td>Ultrasound, breast; unilateral, including axilla when performed; complete</td>
<td>76641</td>
</tr>
<tr>
<td>Ultrasound, breast; unilateral, including axilla when performed; limited</td>
<td>76642</td>
</tr>
<tr>
<td>Ultrasound, abdomen; complete</td>
<td>76700</td>
</tr>
<tr>
<td>Procedure</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Ultrasound, abdomen; limited</td>
<td>76705</td>
</tr>
<tr>
<td>Ultrasound, abdominal wall</td>
<td>76705</td>
</tr>
<tr>
<td>Ultrasound, retroperitoneal; complete</td>
<td>76770</td>
</tr>
<tr>
<td>Ultrasound, retroperitoneal; limited</td>
<td>76775</td>
</tr>
<tr>
<td>Ultrasound, transplanted kidney (with duplex Doppler)</td>
<td>76776</td>
</tr>
<tr>
<td>Duplex scan of arterial inflow and venous outflow of abdominal, pelvic, scrotal contents and/or retroperitoneal organs; complete study</td>
<td>93975</td>
</tr>
<tr>
<td>Duplex scan of arterial inflow and venous outflow of abdominal, pelvic, scrotal contents and/or retroperitoneal organs; limited study</td>
<td>93976</td>
</tr>
<tr>
<td>Duplex scan of aorta, inferior vena cava, iliac vasculature, or bypass grafts; complete</td>
<td>93978</td>
</tr>
<tr>
<td>Duplex scan of aorta, inferior vena cava, iliac vasculature, or bypass grafts; limited</td>
<td>93979</td>
</tr>
<tr>
<td>Ultrasound, pelvic (nonobstetric), complete</td>
<td>76856</td>
</tr>
<tr>
<td>Ultrasound, pelvic (nonobstetric), limited or follow-up</td>
<td>76857</td>
</tr>
<tr>
<td>Ultrasound, scrotum and contents</td>
<td>76870</td>
</tr>
<tr>
<td>Duplex scan of arterial inflow and venous outflow of penile vessels; complete</td>
<td>93980</td>
</tr>
<tr>
<td>Duplex scan of arterial inflow and venous outflow of penile vessels; limited study</td>
<td>93981</td>
</tr>
<tr>
<td>Ultrasound, extremity, nonvascular; complete</td>
<td>76881</td>
</tr>
<tr>
<td>Ultrasound, extremity, nonvascular; limited, anatomic specific for focal abnormality</td>
<td>76882</td>
</tr>
<tr>
<td>Ultrasound, infant hips; dynamic (requiring physician manipulation)</td>
<td>76885</td>
</tr>
<tr>
<td>Ultrasound, infant hips; limited, static (not requiring physician manipulation)</td>
<td>76886</td>
</tr>
<tr>
<td>Ultrasound, axilla</td>
<td>76882</td>
</tr>
<tr>
<td>Ultrasound, upper back</td>
<td>76604</td>
</tr>
<tr>
<td>Ultrasound, lower back</td>
<td>76705</td>
</tr>
<tr>
<td>Ultrasound, spinal canal and contents</td>
<td>76800</td>
</tr>
<tr>
<td>Ultrasound, other soft tissue areas not otherwise specified</td>
<td>76999</td>
</tr>
<tr>
<td>PEDONC 1</td>
<td>GENERAL GUIDELINES</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1.1 – PEDIATRIC ONCOLOGY IMAGING AGE CONSIDERATIONS</td>
<td>11</td>
</tr>
<tr>
<td>1.2 – PEDIATRIC ONCOLOGY IMAGING APPROPRIATE CLINICAL EVALUATIONS</td>
<td>11</td>
</tr>
<tr>
<td>1.3 – PEDIATRIC ONCOLOGY IMAGING MODALITY GENERAL CONSIDERATIONS</td>
<td>15</td>
</tr>
<tr>
<td>1.4 – PET IMAGING IN PEDIATRIC ONCOLOGY</td>
<td>17</td>
</tr>
<tr>
<td>1.5 – DIAGNOSTIC RADIATION EXPOSURE IN PEDIATRIC ONCOLOGY</td>
<td>18</td>
</tr>
</tbody>
</table>
PEDONC-1.1 Pediatric Oncology Imaging Age Considerations

The majority of malignancies occurring in the pediatric population are different diagnoses than those occurring in the adult population. For those diseases which occur in both pediatric and adult populations, minor differences may exist in management between pediatric and adult medical oncologists due to patient age, comorbidities, and differences in disease natural history between children and adults.

✓ Patients age <18 years old at initial diagnosis should be imaged according to the Pediatric Oncology Imaging Guidelines, and patients age ≥18 years at initial diagnosis should be imaged according to the Oncology Imaging Guidelines, except where directed otherwise by a specific guideline section.

✓ Patients age 15-39 years old at initial diagnosis are defined as Adolescent and Young Adult (AYA) Oncology patients. There is significantly more overlap between cancer types in this age group.
 o When unique guidelines for a specific cancer type exist only in either Oncology or Pediatric Oncology, AYA patients should be imaged according to the guideline section for their specific cancer type, regardless of the patient’s age.
 o When unique guidelines for a specific cancer type exist in both Oncology and Pediatric Oncology, AYA patients should be imaged according to the age rule in the previous bullet.

PEDONC-1.2 Pediatric Oncology Imaging Appropriate Clinical Evaluations

✓ In general, a recent (within 60 days) detailed history and physical examination and appropriate laboratory studies should be performed prior to considering advanced imaging, unless the patient is undergoing guideline-supported scheduled off-therapy surveillance evaluation.
 o Because of the relatively small number of childhood cancer treatment centers, it is common to combine off-therapy visits with imaging and other subspecialist visits to accommodate families traveling long distances for their child’s care.

✓ The majority of pediatric oncology imaging indications are listed in the diagnosis-specific guideline sections, but for rare malignancies and other circumstances not specifically addressed elsewhere in the Pediatric Oncology guidelines, the following general principles apply:
 o Routine imaging of brain, spine, neck, chest, abdomen, pelvis, bones, or other body areas is not indicated in the absence of localizing symptoms or abnormalities on plain radiography or ultrasound.

The overwhelming majority of pediatric oncology patients treated in the United States will be enrolled on or treated according to recent Children’s Oncology Group (COG)
protocols. These imaging guidelines are consistent with evaluations recommended by COG protocols commonly used for direct patient care (whether formally enrolled on study or not).

For patients enrolled on a COG study, imaging recommended by COG protocols should generally be approved unless the imaging is being performed solely to address a study objective and would not be indicated in usual clinical care.

Phases of Pediatric Oncology Imaging:

 ✓ **Screening:**
 o All imaging studies requested for patients at increased risk for a particular cancer in the absence of any clinical signs or symptoms.
 o Screening using advanced imaging is only supported for conditions listed in PEDONC-2~Screening Imaging in Cancer Predisposition Syndromes.

 ✓ **Initial Staging:**
 o All imaging studies requested from the time cancer is first clinically suspected until the initiation of specific treatment (which may be surgical resection alone)
 o Pediatric malignancies in general behave more aggressively than adult cancers, and the time from initial suspicion of cancer to specific therapy initiation can be measured in hours to days for most pediatric cancers, compared with weeks to months in most adult cancers
 • Therefore, it is recommended that children with pediatric solid tumors undergo CT evaluation of the chest prior to general anesthesia for biopsy or resection due to the risk of post-operative atelectasis mimicking pulmonary metastasis resulting in inaccurate staging and/or delay in therapy initiation
 • If CTs of other body areas are indicated, (neck, abdomen, pelvis), they should be performed concurrently with chest CT to avoid overlapping fields and the resulting increase in radiation exposure
 • Metastatic CNS imaging and nuclear medicine imaging are generally deferred until after a histologic diagnosis is made, with the exception of aggressive non-Hodgkin lymphomas

 ✓ **Treatment Response:**
 o All imaging studies completed during any type of active treatment (chemotherapy or other medications, radiation therapy, or surgery), including evaluation at the end of planned active treatment
 o Unless otherwise stated in the diagnosis-specific guidelines, imaging for treatment response can be approved after every 2 cycles, which is usually ~6 weeks of therapy for solid tumors and usually ~8-12 weeks for CNS tumors
Surveillance:
- All routine imaging studies requested for a patient who is not receiving any active treatment, even if residual imaging abnormalities are present.
- Unlike adult cancers, in most pediatric cancers surveillance does not begin until all planned multimodal therapy is completed. Pediatric cancers where surgical resection is considered curative are listed in the diagnosis-specific guideline sections.
- The recommended timing for surveillance imaging studies in these guidelines refers to patients who are asymptomatic or have stable chronic symptoms.
- Certain tumor types do not require surveillance with advanced imaging as patient outcomes following relapse are not improved by surveillance imaging. See diagnosis-specific guideline sections for details.
- PET imaging is not supported for surveillance imaging unless specifically stated in elsewhere in the diagnosis-specific guideline sections.
- Patients with new or changing clinical signs or symptoms suggesting recurrent disease should have symptom-appropriate imaging requests approved even when surveillance timing recommendations are not met.

Recurrence:
- All imaging studies completed at the time a recurrence or progression of a known cancer is documented or is strongly suspected based on clinical signs or symptoms, laboratory findings, or results of basic imaging studies such as plain radiography or ultrasound.
- Following documented recurrence of childhood cancer, any studies recommended for initial staging of that cancer type in the diagnosis-specific imaging guideline section should be approved.
- During active treatment for recurrent pediatric cancer, conventional imaging evaluation (CT or MRI, should use the same modality for ongoing monitoring as much as possible) of previously involved areas should be approved according to the Treatment Response imaging in the diagnosis-specific guideline section:
 - Imaging may be indicated more frequently than recommended by guidelines with clinical documentation that the imaging results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance.
- PET is generally not indicated for routine treatment response evaluation during active treatment for recurrent pediatric cancer.
 - In rare circumstances, PET may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance.
 - These requests will be forwarded for Medical Director review.
If a patient with recurrent pediatric cancer completes active treatment with no evidence of disease (NED), s/he should be imaged according to the diagnosis-specific surveillance guideline sections.

Radiation Treatment Planning in Pediatric Oncology:
✓ Imaging performed in support of radiation therapy treatment planning should follow guidelines outlined in ONC-1.5 General Guidelines – Coding and Payer Notes.

Cardiac Function Assessment in Pediatric Oncology during Active Treatment:
✓ Echocardiography (CPT® 93306, 93307, or 93308) is preferred for evaluation of cardiac function prior to cardiotoxic chemotherapy and can be performed as often as each chemotherapy cycle at the discretion of the treating pediatric oncologist based on:
 o Cumulative cardiotoxic therapy received to date
 o Patient’s age and gender
 o Most recent echocardiogram results
 o New or worsening cardiac symptoms

✓ Multi-Gated Acquisition (MUGA, CPT® 78472) blood pool nuclear medicine scanning should not be approved for cardiac function monitoring in pediatric oncology patients unless one of the following applies:
 o Echocardiography yielded a borderline shortening fraction (<30%) and additional left ventricular function data are necessary to make a chemotherapy decision
 o Echocardiography windowing is suboptimal due to body habitus or tumor location

Immunosuppression during Pediatric Cancer therapy and imaging ramifications:
✓ Patients may be severely immunocompromised during active chemotherapy treatment and any conventional imaging request to evaluate for infectious complications during this time frame should be approved immediately.
✓ Imaging requests for infectious disease concerns for all patients with absolute neutrophil count (ANC) <500 or inconclusive findings on chest x-ray or US at any ANC during active treatment should be approved as requested.
✓ Additionally, patients may have therapy-induced hypogammaglobulinemia which requires supplemental intravenous immune globulin (IVIG) during maintenance therapy. Patients receiving supplemental IVIG should be treated similarly to patients with ANC <500 with regards to imaging for infectious disease.
✓ Some patients are treated with very intensive chemotherapy regimens (including autologous stem cell transplantation—See ONC-29 Hematopoietic Stem Cell Transplantation) and spend the majority of their chemotherapy treatment phase in the hospital. Due to the high risk of invasive infections, frequent CT may be indicated to evaluate known sites of invasive fungal infection, and in general these should be approved as requested.
o Surveillance imaging of asymptomatic patients to detect invasive fungal infection has not been shown to impact patient outcomes. Imaging requests in these circumstances should only be approved when acute clinical decisions will be made based on the imaging.

Hematopoietic Stem Cell Transplant (HSCT) in Pediatric Oncology:

✓ Transplantation of hematopoietic stem cells from bone marrow, peripheral blood, or cord blood is commonly used in the following clinical situations in pediatric hematology and oncology patients:
 - High risk or recurrent leukemia (allogeneic)
 - Recurrent lymphoma (allogeneic or autologous)
 - Hemophagocytic lymphohistiocytosis (allogeneic)
 - High risk sickle cell disease (allogeneic)
 - High risk neuroblastoma (autologous)
 - High risk CNS tumors (autologous)
 - Recurrent Ewing sarcoma family of tumors (autologous, rarely allogeneic)

✓ Imaging considerations for HSCT should follow guidelines in:
ONC-29 Hematopoietic Stem Cell Transplantation.

PEDONC-1.3 Pediatric Oncology Imaging Modality General Considerations

✓ **CT**
 - CT with contrast is the imaging study of choice in pediatric patients with lymphomas or solid tumors of the neck, thorax, abdomen, and/or pelvis
 - If CT contrast use is contraindicated due to allergy or impaired renal function, either CT without contrast or MRI without and with contrast may be substituted at the discretion of the ordering physician

✓ **MRI**
 - MRI without and with contrast is the study of choice for CNS and musculoskeletal tumors
 - If MRI contrast use is contraindicated due to allergy or impaired renal function, MRI without contrast may be substituted at the discretion of the ordering physician
 - Due to the length of time for image acquisition and the need for stillness, anesthesia is required for almost all infants and young children (age <7 years), as well as older children with delays in development or maturity. In this patient population, MRI imaging sessions should be planned with a goal of avoiding a short-interval repeat anesthesia exposure due to insufficient information using the following considerations:
 - MRI should always be performed without and with contrast unless there is a specific contraindication to gadolinium use, since the patient already has intravenous access for anesthesia.
- If multiple body areas are supported by MSI guidelines for the clinical condition being evaluated, MRI of all necessary body areas should be obtained concurrently in the same anesthesia session
 - Whole body MRI imaging is considered investigational for all pediatric oncology indications at this time. See Preface-5.2~Whole Body MR Imaging for details.

✓ Plain radiography
 - CXR can provide a prompt means to evaluate primary intrathoracic tumors and continues to be the initial imaging study recommended to detect complications, such as suspected infection, in symptomatic patients undergoing treatment.
 - CXR continues to be the initial imaging study recommended for pulmonary surveillance for some pediatric cancers. See diagnosis-specific guideline sections for details.
 - Plain radiography continues to be the initial imaging study recommended for evaluation of tumors and other lesions of the appendicular skeleton, both during and after completion of treatment. See diagnosis-specific guideline sections for details.
 - Plain radiographs of the abdomen have largely been replaced by ultrasound, CT, or MRI

✓ Ultrasound
 - Ultrasound is not widely used in pediatric oncology for staging, but is frequently used for surveillance in patients who have successfully treated (primarily abdominal or pelvic) tumors with little or no residual disease. See diagnosis-specific guideline sections for details.

✓ Nuclear Medicine
 - General PET imaging consideration can be found in PEDONC-1.4 PET Imaging in Pediatric Oncology.
 - Bone scan is frequently used for evaluation of bone metastases during initial treatment, treatment response, and surveillance in pediatric oncology
 - For the purposes of these guidelines, any of the following codes can be approved where “bone scan” is indicated:
 - CPT® 78300
 - CPT® 78305
 - CPT® 78306
 - CPT® 78320
 - CPT® 78305 and 78320
 - CPT® 78306 and 78320
 - If CPT® 78300 and 78320 are requested together, only 78320 should be approved
 - CPT® 78315 has no specific indications for evaluation of malignant disease
 - 123I-Metaiodobenzylguanidine (MIBG) scintigraphy is the preferred metabolic imaging for neuroblastoma and is positive in 90-95% of neuroblastomas, and is
also used for evaluation of pheochromocytomas, paragangliomas, ganglioneuromas, and ganglioneuroblatomas

- For the purposes of these guidelines, any of the following codes can be approved where “MIBG” is indicated:
 - CPT® 78800
 - CPT® 78801
 - CPT® 78802
 - CPT® 78803
 - CPT® 78804
- Octreotide and gallium scans use the same CPT codes as MIBG

PEDONC-1.4 PET Imaging in Pediatric Oncology:

NOTE: Some payors have specific restrictions on PET imaging, and those coverage policies may supersede the recommendations for PET imaging in these guidelines.

Throughout these guidelines, the term “PET” refers specifically to 18F-FDG-PET imaging and also applies to PET/CT fusion studies.

- PET imaging in pediatric oncology should use PET/CT fusion imaging (CPT®78815 or CPT®78816) unless there is clear documentation that the treating facility does not have fusion capacity, in which case PET alone (CPT®78812 or CPT®78813) can be approved along with the appropriate CT studies. Unbundling PET/CT imaging into separate PET and diagnostic CT codes is otherwise not supported.

- The decision whether to use skull base to mid-femur (“eyes to thighs”) procedure code for PET (CPT®78812 or CPT®78815) or whole body PET (CPT®78813 or CPT®78816) is addressed in the diagnosis-specific guideline sections.

- PET imaging is not reliable for the detection of anatomic lesions smaller than 8 mm in size.

- PET imaging using isotopes other than 18F-FDG, including 18F-NaF (PET bone scan), 11C-Choline, 68Ga-DOTATATE, and Fluciclovine F 18, is considered investigational at this time

- PET has not been shown to be diagnostically useful in all forms of childhood cancer. PET is supported for pediatric malignancies with significant published evidence regarding its diagnostic accuracy and importance in accurately directing patient care decisions. See diagnosis-specific guideline sections for details.

- PET imaging is not specific to cancer, and has a high rate of false positivity. Inflammation, infection (especially granulomatous), trauma, and post-operative healing may show high levels of FDG uptake and be false-positive for malignant lesions.
PET for rare malignancies not specifically addressed by eviCore guidelines is generally not indicated, due to lack of available evidence regarding diagnostic accuracy of PET in the majority of rare cancers. Conventional imaging studies should be used for initial staging and treatment response for these diagnoses. PET can be approved if all of the following apply:

- Conventional imaging (CT, MRI, US, plain film) reveals findings that are equivocal or suspicious
- No other specific metabolic imaging (MIBG, octreotide, technetium, etc.) is appropriate for the cancer type
- The submitted clinical information describes a specific decision regarding the patient’s care that will be made based on the PET results
- These requests will be forwarded for Medical Director review

PET imaging is not supported for surveillance imaging unless specifically stated in elsewhere in the diagnosis-specific guideline sections.

Unless otherwise specified for a specific cancer type, once PET has been documented to be negative for a given patient’s cancer or all PET-avid disease has been surgically resected, PET should not be used for continued disease monitoring or surveillance unless one of the following applies:

- Conventional imaging (CT, MRI, US, plain film) reveals findings that are inconclusive or suspicious for recurrence
 - Residual mass that has not changed in size since the last conventional imaging does not justify PET imaging
 - PET avidity in a residual mass at the end of planned therapy is not an indication for PET imaging during surveillance.
- Very rare circumstances where tumor markers or obvious clinical symptoms show strong evidence suggesting recurrence and PET would replace conventional imaging modalities
- The patient is undergoing salvage treatment for a recurrent solid tumor with residual measurable disease on conventional imaging and confirmed repeat negative PET imaging will allow the patient to transition from active treatment to surveillance.
- These requests will be forwarded for Medical Director review.

PEDONC-1.5 Diagnostic Radiation Exposure in Pediatric Oncology

Young children are at increased risk for malignancy from diagnostic radiation exposure, most commonly from CT and nuclear medicine imaging. They are more sensitive to radiation than adults and generally live longer after receiving radiation doses from medical procedures, resulting in a larger number of years during which to manifest a cancer.

Because of this increased risk in young children, requests to substitute MRI without and with contrast for CT with contrast to avoid radiation exposure can be approved if all of the following criteria apply:
- The patient is presently a young child and the ordering physician has documented the reason for MRI, rather than CT, is to avoid radiation exposure.
- The disease-specific guidelines do not list CT as superior to MRI for the current disease and time point, meaning the MRI will provide equivalent or superior information relative to CT.
- The request is for a body area other than chest as MRI is substantially inferior to CT for detection of small pulmonary metastases.

The guidelines listed in this section for certain specific indications are not intended to be all-inclusive; clinical judgment remains paramount and variance from these guidelines may be appropriate and warranted for specific clinical situations.

References

PEDONC 2 Screening Imaging in Cancer Predisposition Syndromes

2.1 – GENERAL CONSIDERATIONS .. 22

2.2 – LI-FRAUMENI SYNDROME (LFS) .. 23

2.3 – NEUROFIBROMATOSIS 1 AND 2 (NF1 AND NF2) .. 25

2.4 – BECKWITH-WIEDEMANN SYNDROME (BWS) ... 27

2.5 – DENYS-DRASH SYNDROME (DDS) .. 27

2.6 – WILMS TUMOR-ANIRIDIA-GROWTH RETARDATION (WAGR) 28

2.7 – FAMILIAL ADENOMATOUS POLYPOSIS (FAP) AND RELATED CONDITIONS .. 28

2.8 – MULTIPLE ENDOCRINE NEOPLASIAS (MEN) ... 29

2.9 – TUBEROUS SCLEROSIS COMPLEX (TSC) ... 30

2.10 – VON HIPPEL-LINDAU SYNDROME (VHL) .. 30

2.11 – RHABDOID TUMOR PREDISPOSITION SYNDROME ... 31

2.12 – FAMILIAL RETINOBLASTOMA SYNDROME ... 32

2.13 – HEREDITARY PARAGANGLIOMA-PHEOCHROMOCYTOMA SYNDROMES 32

2.14 – COSTELLO SYNDROME .. 33
PEDONC-2.1 General Considerations

This section is intended to give guidance for screening imaging prior to diagnosis with a specific malignancy. Once a patient with a cancer predisposition syndrome has been diagnosed with a malignant disease, future imaging decisions should be guided by the appropriate disease-specific guidelines except as explicitly stated elsewhere in this section.

This section’s guidelines are limited to cancer predisposition syndromes with screening imaging considerations. Syndromes requiring only clinical or laboratory screening are not discussed here.

✓ In general, a recent (within 60 days) detailed history and physical examination and appropriate laboratory studies should be performed prior to considering advanced imaging, unless the patient is undergoing guideline-supported scheduled screening evaluation identified in this section.

Many of these cancer predisposition syndromes also affect adults as survival continues to improve for these patients. Adults with syndromes covered in this section may follow these imaging guidelines except where contradicted by specific statements in the adult Imaging Guidelines or payor-specific coverage policies.

Documentation of genetic or molecular confirmation of the appropriate syndrome with increased cancer risk is preferred for any patient to qualify for screening imaging. There are a number of complex ethical, social, and financial issues involved in the decision to complete genetic testing in a pediatric patient:

- **NOTE: Some payors consider certain genetic tests to be experimental, and those coverage policies supersede the recommendations for genetic testing in this section.**
- From the 2013 AAP Policy Statement, “Predictive genetic testing for adult-onset conditions generally should be deferred unless an intervention initiated in childhood may reduce morbidity or mortality.” *Imaging surveillance is one such intervention and should not be performed without justifiable cause.*
- Genetic testing should be performed in conjunction with genetic counseling for appropriate communication of risks identified by testing.
- When genetic testing is not possible or not supported by health plan coverage policies, formal diagnosis after evaluation by a physician with significant training and/or experience in cancer predisposition syndromes (most commonly a geneticist or oncologist) is generally sufficient to confirm eligibility for screening imaging.
PEDONC-2.2 Li-Fraumeni Syndrome (LFS)

Syndrome inherited in an autosomal dominant manner (50% risk to offspring) associated with germline mutations in *TP53* resulted in an increased susceptibility to a variety of cancers.

- Eighty percent of individuals will have germline *TP53* mutation:
 - Tumor-specific *TP53* mutations are much more common than germline *TP53* mutations and are not associated with an increased risk for subsequent cancers
 - If *TP53*-negative, formal diagnosis of LFS should be assigned by a physician with significant training and/or experience in LFS (most commonly a geneticist or oncologist) based on specified clinical criteria prior to beginning a screening imaging program
 - *TP53* mutations may be present in 50-80% of pediatric adrenocortical carcinoma, 10% of pediatric rhabdomyosarcoma, and 10% of pediatric osteogenic sarcoma patients

- Because of the wide variety of possible malignancies, there is not to date a standard approach for screening that is supported by evidence:
 - Patients with LFS have an increased sensitivity to ionizing radiation, so screening strategies resulting in significant radiation exposure are not appropriate (CT and nuclear medicine).

The following imaging studies should be considered appropriate in patients with LFS:

- Annual complete detailed physical examinations, complete blood counts, and urinalyses form the backbone of LFS cancer screening.
 - MRI Brain (CPT® 70553) without and with contrast for all patients once following initial diagnosis
 - Follow up MRI will be determined on a case-by-case basis, depending on initial MRI findings and family history of CNS tumors. These requests should be forwarded for medical director review.
 - Abdominal ultrasound (CPT® 76700) every 3-6 months to evaluate for adrenocortical carcinomas which have improved prognosis with early detection
 - Annual Breast MRI (CPT® 77059) alternating every 6 months with breast ultrasound for breast cancer surveillance is appropriate for LFS patients beginning at age 20-25 (see CH-25.6~Breast MRI Indications)
 - Targeted MRI imaging without and with contrast of any body area with documented signs or symptoms suggestive of possible malignancy unless a specific cause is identifiable
 - When a specific malignancy is suspected, the patient should be imaged according to the eviCore imaging guideline specific to the suspected cancer type
Studies ordered as part of a screening imaging program based on specific family cancer history that has been developed for an individual patient in conjunction with a multidisciplinary team including at least genetics and oncology
 o Specifics of the program should be obtained and available for the medical director reviewing the case
 o Even in this setting, whole body MRI is not supported for LFS (see next bullet)

Whole body MRI (WBMRI) screening has not been shown to improve LFS patient outcomes to date:

The primary reference cited by providers to support requests for WBMRI in LFS is Villani et al, Lancet Oncol 2011. This article does not provide sufficient scientific rationale to justify WBMRI use in Li-Fraumeni patients.
 o One major confounder in the outcome measures is that the surveillance-detected tumors are almost all low grade malignancies. The authors make a poorly supported assumption that surveillance improves survival outcomes, but the tumors in the no surveillance group were all very high grade malignancies, and half of the tumors in the surveillance group were benign or very low grade, so their results are significantly skewed, to the point that their conclusions about outcome are invalid.
 • In the 18 surveillance patients there were 10 tumors detected (1 malignant fibrous histiocytoma, 2 choroid plexus carcinomas, 2 adrenocortical carcinomas, 3 low grade brain gliomas, 1 thyroid adenoma and 1 myelodysplastic syndrome.
 • In the 16 patients in the no-surveillance group, 10 tumors were detected (1 rhabdomyosarcoma, 1 osteosarcoma, 2 choroid plexus carcinomas, 2 medulloblastomas, 1 high grade brain glioma, 1 neuroblastoma, 1 acute myeloid leukemia, 1 malignant meningioma, 1 lung carcinoma, and 1 breast carcinoma).
 • The high grade malignancies occurring in both groups are choroid plexus carcinoma and adrenocortical carcinoma. Abdominal ultrasound is currently recommended by eviCore guidelines, and MRI Brain can be approved for LFS patients with a family history of choroid plexus carcinoma. Breast MRI for adult LFS patients is also currently recommended by MSI guidelines.
 o Most relevant to this topic, **only ONE tumor was detected by whole body MRI**, and that was a malignant fibrous histiocytoma in a 39 year old which was also noticeable on clinical exam at the time of the whole body MRI. No other tumor of any kind was detected by whole body MRI out of ~100 studies overall (18 patients annually for 6 years). **So, in this trial there was not a single tumor detected by whole body MRI alone.**

Additionally, there continues to be lack of standardization in the body areas, views, image sequences, and contrast use in WBMRI protocols for LFS.
PEDONC-2.3 Neurofibromatosis 1 and 2 (NF1 and NF2)

NF1

Common syndrome inherited in an autosomal dominant manner (50% risk to offspring) affecting 1 in 2500 people. The diagnosis is commonly made based on established clinical criteria including café-au-lait spots, Lisch nodules of the iris, axillary freckling, family history, and the presence of NF-associated tumors.

Genetic testing is encouraged for children with possible NF1 and no family history prior to assigning a diagnosis, but will not identify a mutation for all patients with NF1. The majority of tumors are benign in nature, but malignant degeneration can occur.

NF1-affected persons have increased sensitivity to ionizing radiation, so CT and nuclear medicine imaging are not appropriate screening or surveillance studies for these patients. CT and/or nuclear medicine studies may be indicated for acute clinical situations and should be judged on a case-by-case basis. These requests will be forwarded for Medical Director review.

Annual ophthalmology evaluation is recommended beginning at the time of diagnosis of NF1 to evaluate for optic pathway abnormalities:

- **Screening MRIs of the Brain (CPT®70553) and Orbits (CPT®70543) for asymptomatic individuals are not generally recommended due to the ~60% rate of unidentified bright objects (UBOs, T2-weighted signal abnormalities) which mostly disappear by age 30**
 - A one-time MRI Brain (CPT®70553) and Orbits (CPT®70543) without and with contrast can be approved to clarify the diagnosis of NF1 if evaluation by a physician with significant training and/or experience in neurofibromatosis is inconclusive (most commonly a neurologist, geneticist, ophthalmologist, or oncologist)
 - Routine follow up imaging of UBOs is not warranted in the absence of acute symptoms suggesting new or worsening intracranial disease
 - Children with negative brain and orbital screening at age 15 months generally do not develop optic pathway gliomas

- **Patients with NF1 and documented optic pathway gliomas should be imaged according to PEDONC-4.2~Intracranial Low Grade Gliomas.**

NF1 patients are at increased risk for plexiform neurofibromas (PN) and malignant peripheral nerve sheath tumors (MPNST—a high grade sarcoma).

- **Screening imaging of asymptomatic patients for these tumors is not supported by evidence. PET imaging is not supported for PN surveillance in asymptomatic patients at this time as the positive predictive value is only 60-65% even in symptomatic patients.**
MRI imaging without and with contrast is appropriate for any clinical symptoms suggestive of change in a known PN in a patient with NF1.

Although PET imaging has a positive predictive value of only 61-63% in NF1 patients with suspected transformation to MPNST, the negative predictive value is high (96-99%)
 - PET imaging is indicated for evaluating NF1 patients with clinical symptoms concerning for malignant transformation of a known PN when all of the following conditions exist:
 - Recent MRI is inconclusive regarding transformation or progression
 - Negative PET will result in a decision to avoid biopsy in a difficult or morbid location
 - Inconclusive PET findings should lead to biopsy of the concerning lesion
 - Repeat PET studies are not indicated due to the poor positive predictive value in this setting

Patients with NF1 and known plexiform neurofibromas should be imaged according to guidelines in PEDPN-2.1~Neurofibromatosis 1.

Patients with NF1 and new soft tissue masses should be imaged according to ONC-12~Sarcoma or PEDONC-8.3 Non-Rhabdomyosarcoma Soft Tissue Sarcomas, depending on the patient’s age at the time the mass is discovered.

Patients with NF1 and new bone masses should be imaged according to PEDONC-9 Bone Tumors.

NF2

NF2 is substantially less common than NF1. It is inherited in an autosomal dominant manner (50% risk to offspring) affecting ~1 in 25000 people. NF2 is associated with increased risk for meningiomas (50% of affected individuals), vestibular schwannomas, and spinal tumors (75% of affected individuals).

Patients with NF2 and known vestibular schwannomas should be imaged according to guidelines in PEDPN-2.2~Neurofibromatosis 2.

Patients with NF2 and known meningioma should be imaged according to guidelines in ONC-2.8 Meningiomas.

Patients with NF2 and known ependymoma should be imaged according to guidelines in PEDONC-4.8 Ependymoma.

Recommended cancer screening imaging includes:

- Annual MRI Brain without and with contrast (CPT® 70553) beginning at age 10 years
☑ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved every 3 years beginning at age 10 years

Additional appropriate imaging requests include:

☑ MRI Brain without and with contrast (CPT®70553) should be approved for any patient with NF2 and clinical symptoms of intracranial mass or vestibular disease

☑ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) should be approved for any patient with NF2 and:
 - Clinical symptoms suggestive of spinal or paraspinal tumors, including uncomplicated back pain or radiculopathy
 - Recent diagnosis with a meningioma or vestibular schwannoma

PEDONC-2.4 Beckwith-Wiedemann Syndrome (BWS)

Inherited syndrome characterized by macroglossia, hemihypertrophy, macrosomia, organomegaly, and neonatal hypoglycemia. Patients with isolated hemihypertrophy are also imaged according to this guideline.

Caused by mutation at chromosome 11p15, affected children are predisposed to Wilms tumor, hepatoblastoma, and adrenocortical carcinoma.

Recommended cancer screening imaging includes:

☑ Abdominal US (CPT®76700) every 3 months from birth to 8th birthday

☑ Serum AFP every 3 months to 5th birthday

☑ Patients with BWS and known renal tumors should be imaged according guidelines in PEDONC-7~PEDIATRIC RENAL TUMORS.

☑ Patients with BWS and known hepatoblastoma should be imaged according guidelines in PEDONC-11.2~HEPATOBLASTOMA.

☑ Patients with BWS and known adrenocortical carcinoma should be imaged according guidelines in PEDONC-14~PEDIATRIC ADRENOCORTICAL CARCINOMA.

PEDONC-2.5 Denys-Drash Syndrome (DDS)

Characterized by pseudohermaphroditism, early renal failure, and >90% risk of Wilms tumor development in each kidney. Associated with mutations at 11p13, risk of renal failure after detection of symptomatic Wilms tumor is 62%, so early detection may allow for renal-sparing surgical approaches.

Recommended cancer screening imaging includes:

☑ Abdominal ultrasound (CPT®76700) every 3 months from birth to 8th birthday
Patients with DDS and known renal tumors should be imaged according guidelines in PEDONC-7~PEDDT RENAL TUMORS.

PEDONC-2.6 Wilms Tumor-Aniridia-Growth Retardation (WAGR)

Named for the components of the disorder, it is associated with mutations at 11p13. As the name suggests, patients are predisposed to Wilms tumor, with 57% of patients in one cohort developing Wilms tumor. Risk of renal failure after detection of symptomatic Wilms tumor is 38%, so early detection may allow for renal-sparing surgical approaches.

Recommended cancer screening imaging includes:

- Abdominal US (CPT®76700) every 3 months from birth to 8th birthday
- Patients with WAGR and known renal tumors should be imaged according guidelines in PEDONC-7~PEDDT RENAL TUMORS.

PEDONC-2.7 Familial Adenomatous Polyposis (FAP) and Related Conditions

Inherited in an autosomal dominant manner (50% risk to offspring), it is also known as Adenomatous Polyposis Coli (APC). It is associated with the development of thousands of colonic polyps by age 20 and >90% risk of colorectal carcinoma. Prophylactic total colectomy is recommended by age 20 for most patients. FAP is also associated with hepatoblastoma.

Patients with Lynch, Gardner, and Turcet syndromes should also be imaged according to these guidelines.

Recommended cancer screening imaging includes:

- Abdominal US (CPT®76700) every 3 months from birth to 6th birthday
 - Annual Abdominal US for life after age 6 with family history of desmoid tumors
- Serum AFP every 3 months to 6th birthday
- Annual colonoscopy beginning at age 7
- Annual esophagogastroduodenoscopy beginning at age 10
- Annual thyroid ultrasound (CPT®76536) beginning at age 12
- Annual pelvic ultrasound (CPT®76856) beginning at age 30

Patients with FAP and known colorectal tumors should be imaged according guidelines in ONC-16~COLORECTAL CANCER.

Patients with FAP and known desmoid tumors should be imaged according guidelines in PEDONC-8.3~NON-RHABDOMYOSARCOMA SOFT TISSUE SARCOMAS (NRSTS).
PEDONC-2.8 Multiple Endocrine Neoplasias (MEN)

Inherited in an autosomal dominant manner (50% risk to offspring)

MEN1 is characterized by parathyroid, pancreatic islet cell, and pituitary gland tumors (3 P’s), as well as carcinoid tumors in the chest and abdomen, and 28% of patients will develop at least one tumor by age 15.

MEN2a is characterized by medullary thyroid carcinoma, parathyroid adenomas, and pheochromocytomas.

MEN2b is characterized by ganglioneuromas of the GI tract and skeletal abnormalities presenting in infancy.

Recommended cancer screening imaging includes:

- **MEN1**
 - Annual MRI Brain without and with contrast (CPT®70553) can be approved beginning at age 5
 - Annual MRI Abdomen without and with contrast (CPT®74183) or CT Abdomen with contrast (CPT® 74160) can be approved beginning at age 5
 - Annual MRI Chest without and with contrast (CPT®71552) or CT Chest with contrast (CPT® 71260) can be approved beginning at age 15
 - Annual Octreotide study (CPT®78800, 78801, 78802, 78803, or 78804) can be approved beginning at age 5

- Patients with MEN1 and known thyroid cancer should be imaged according guidelines in [ONC-6~THYROID CANCER](#)

- Patients with MEN1 and known pheochromocytoma should be imaged according guidelines in [ONC-15~NEUROENDOCRINE CANCERS AND ADRENAL TUMORS](#)

- **MEN2a and MEN2b**
 - Annual measurement of catecholamines for pheochromocytoma screening
 - MRI Abdomen without and with contrast (CPT®74183) can be approved every 3 years beginning at age 5
 - Octreotide study (CPT®78800, 78801, 78802, 78803, or 78804) or Adrenal Nuclear imaging (CPT®78075) can be approved for elevated catecholamines or inconclusive adrenal mass on MRI

- Patients with MEN2a or MEN2b and known pheochromocytoma should be imaged according guidelines in [ONC-15~NEUROENDOCRINE CANCERS AND ADRENAL TUMORS](#)
PEDONC-2.9 Tuberous Sclerosis Complex (TSC)

Inherited in an autosomal dominant manner (50% risk to offspring), affecting ~1 in 6000 individuals, it is associated with benign tumors, hypopigmented skin macules (ash leaf spots), pulmonary lymphangioleiomyomatosis, developmental delay, and epilepsy.

Malignancies associated with this syndrome include:

- Subependymal giant cell astrocytomas (SEGA tumors)
 - Historically, early surgery was important to reduce morbidity related to these tumors
 - More recently, everolimus has been successfully used to treat these tumors without surgery, and early detection remains an important feature for success
- Renal cell carcinoma
- Cardiac rhabdomyosarcoma
- Pulmonary lymphangioleiomyomatosis

Recommended cancer screening imaging includes:

- Annual ophthalmologic evaluation
- Annual Brain MRI without and with contrast (CPT®70553) beginning at age 3
- Annual Renal US (CPT®76770) beginning at age 3
 - Annual MRI Abdomen without and with contrast (CPT®74183) can be substituted for Renal US in patients with documented renal lesions
- Annual Echocardiography beginning at age 4
- CT Chest without contrast (CPT®71250) every 5 years beginning at age 18 years
 - Additional CTs may be approved every 1 year for patients with documented abnormalities
 - CT Chest without contrast should be approved for evaluation of any new pulmonary symptoms or worsening pulmonary function testing
- Patients with TSC and known SEGA tumors should be imaged according to **PEDONC-4.2~Intracranial Low Grade Gliomas**
- Patients with TSC and known renal cell carcinoma should be imaged according to **PEDONC-7.4~Renal Cell Carcinoma**

PEDONC-2.10 Von Hippel-Lindau Syndrome (VHL)

Inherited in an autosomal dominant manner (50% risk to offspring), it is associated with CNS hemangioblastomas, retinal angiomas, endolymphatic sac tumors, renal cell carcinoma, and pheochromocytomas and other neuroendocrine tumors.

Recommended cancer screening imaging includes:
✓ Annual ophthalmologic evaluation

✓ Annual measurement of catecholamines beginning at age 2
 o Octreotide study (CPT® 78800, 78801, 78802, 78803, or 78804) or Adrenal Nuclear imaging (CPT® 78075) can be approved for elevated catecholamines or inconclusive adrenal mass on MRI

✓ Audiology assessment every 2-3 years beginning at age 5
 o If frequent ear infections are present, MRI Brain without and with contrast (CPT® 70553) with attention to internal auditory canals can be approved

✓ MRI Brain without and with contrast (CPT® 70553) every 2 years beginning at age 12
 o Patients with known hemangioblastoma that has not been resected can have MRI Brain every 1 year or for any new or worsening symptoms

✓ MRI Spine without and with contrast (Cervical-CPT® 72156), Thoracic-CPT® 72157, and Lumbar-CPT® 72158) every 2 years beginning at age 16
 o Patients with known hemangioblastoma that has not been resected can have MRI Spine every 1 year or for any new or worsening symptoms

✓ Annual Abdominal US (CPT® 76700) beginning at age 5

✓ MRI Abdomen without and with contrast (CPT® 74183) every 2 years beginning at age 16

✓ Patients with VHL and known CNS hemangioblastoma should be imaged according to PEDONC-4.2~Intracranial Low Grade Gliomas

✓ Patients with VHL and known renal cell carcinoma should be imaged according to PEDONC-7.4~Renal Cell Carcinoma

✓ Patients with VHL and known pheochromocytoma or other neuroendocrine tumors should be imaged according guidelines in ONC-15~NEUROENDOCRINE CANCERS AND ADRENAL TUMORS

PEDONC-2.11 Rhabdoid Tumor Predisposition Syndrome

Inherited in an autosomal dominant manner (50% risk to offspring), it is associated with malignant rhabdoid tumors of the kidney and extrarenal locations, and atypical teratoid/rhabdoid tumors of the CNS. It is caused by a germline mutation in INI1 or SMARCB1, and is associated with a more variable prognosis than de novo rhabdoid tumors.

There is insufficient evidence to date to provide screening recommendations for advanced imaging, but targeted advanced imaging should be approved for any patient with this syndrome and any clinical symptoms to suggest malignancy.
PEDONC-2.12 Familial Retinoblastoma Syndrome

This syndrome is inherited in an autosomal dominant manner (50% risk to offspring). As the name suggests, it is associated with retinoblastoma, as well as osteosarcoma, pediatric melanoma, and a significantly increased risk for radiation-related malignancies.

Regular physical and ophthalmologic evaluations under anesthesia are the hallmark of surveillance strategies for these patients, and asymptomatic screening imaging does not have a defined role at this time.

When advanced imaging is necessary, ultrasound or MRI should be used if at all possible in lieu of CT or nuclear imaging to avoid radiation exposure in these patients.

PEDONC-2.13 Hereditary Paraganglioma-Pheochromocytoma Syndromes

Caused by mutations in *SDHx* genes, this syndrome is inherited in an autosomal dominant manner (50% risk to offspring), and is associated with pheochromocytomas and paragangliomas.

Patients with Multiple Endocrine Neoplasias should not use this guideline and should be imaged according to **PEDONC-2.8 Multiple Endocrine Neoplasias (MEN)**.

Cancer screening should begin at age 10 or at least 10 years before the youngest age at diagnosis in the family history. The following recommended imaging can be approved:

- **All patients with *SDHx* mutations:**
 - Annual measurement of catecholamines
 - MIBG imaging (See **PEDONC-1.3**) for evaluation of elevated catecholamines
 - MRI without and with contrast or CT with contrast can be approved to evaluate abnormal MIBG findings

- **Patients with *SDHC* or *SDHD* mutations:**
 - MRI Orbits/Face/Neck without and with contrast (CPT®70543) every 2 years
 - MIBG imaging every 4 years (See **PEDONC-1.3**)
 - MRI without and with contrast or CT with contrast can be approved to evaluate abnormal MIBG findings
 - No documented role for PET/CT imaging in screening for these patients

- **Patients with *SDHB* mutations:**
 - CT Chest (CPT®71260) and Abdomen/Pelvis with contrast (CPT®74177) OR MRI Chest(CPT®71552), Abdomen (CPT®74183), and Pelvis (CPT®72197) without and with contrast, and every 2 years
 - MIBG imaging every 4 years (See **PEDONC-1.3**)
 - No documented role for PET/CT imaging in screening for these patients

- **Patients with *SDHA* or *SDH5* mutations:**
No specific imaging screening has been shown to improve patient outcomes to date

✓ Patients with VHL and known pheochromocytoma or other neuroendocrine tumors should be imaged according guidelines in **ONC-15~NEUROENDOCRINE CANCERS AND ADRENAL TUMORS**

PEDONC-2.14 Costello Syndrome

Caused by mutations in *HRAS* genes, this syndrome is inherited in an autosomal dominant manner (50% risk to offspring), and is associated with rhabdomyosarcoma and neuroblastoma in early childhood, and transitional cell cancer of the bladder in older children and adults.

Recommended screening imaging includes:

✓ Following initial diagnosis, any or all of the following are indicated:
 o Echocardiogram (CPT®93306)
 o MRI Brain (CPT®70553) without and with contrast
 o MRI Cervical (CPT®72156) and Thoracic Spine (CPT®72157) without and with contrast

✓ Ultrasound of the Abdomen (CPT®76700) and Pelvis (CPT®76856) every 3 months from birth to 10th birthday

✓ Echocardiogram (CPT®93306) as requested for patients with Costello Syndrome and known cardiac disease

✓ Patients with Costello Syndrome and known rhabdomyosarcoma should be imaged according guidelines in **PEDONC-8.2~Rhabdomyosarcoma (RMS)**

✓ Patients with Costello Syndrome and known neuroblastoma should be imaged according guidelines in **PEDONC-6~Neuroblastoma**

References – Cancer Predisposition Syndromes

27. Evans DG, Neurofibromatosis 2, *GeneReviews™* [Internet], Pagon RA, Adam MP, Bird TD et al, version date August 18, 2011,
34. Giusti F, Marini F, and Brandi ML, Multiple Endocrine Neoplasia Type 1, *GeneReviews™ [Internet]* eds. Pagon RA, Adam MP, Ardingher HH et al, version February 12, 2015.
<table>
<thead>
<tr>
<th>PEDONC 3</th>
<th>PEDIATRIC LEUKEMIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 – PEDIATRIC LEUKEMIA GENERAL CONSIDERATIONS</td>
<td>...37</td>
</tr>
<tr>
<td>3.2 – ACUTE LYMPHOBLASTIC LEUKEMIA (ALL)</td>
<td>..37</td>
</tr>
<tr>
<td>3.3 – ACUTE MYELOID LEUKEMIA (AML)</td>
<td>..39</td>
</tr>
</tbody>
</table>
PEDONC-3.1 Pediatric Leukemia General Considerations

The overwhelming majority of leukemias occurring in children are acute. Chronic myelogenous leukemia (CML) is rare in children, and the occurrence of chronic lymphocytic leukemia (CLL) in pediatric patients has only been reported once to date.

- MRI Brain without and with contrast (CPT® 70553) can be performed in patients exhibiting CNS symptoms and in patients found to have high tumor burden on CSF cytology.
- There is not sufficient evidence to support the use of PET imaging for any indication in the management of acute lymphoblastic leukemia, acute myeloid leukemia, or chronic myeloid leukemia.
- Routine advanced imaging is not indicated in the evaluation and management of chronic myeloid leukemia in the absence of specific localizing clinical symptoms or clearance for hematopoietic stem cell transplantation. See ONC-29~Hematopoietic Stem Cell Transplantation for imaging guidelines related to transplant.

PEDONC-3.2 Acute Lymphoblastic Leukemia (ALL)

- The majority of ALL patients have B-precursor ALL and routine advanced imaging is not necessary.
- Patients with B-precursor or T-cell lymphoblastic lymphoma without bone marrow involvement are treated similarly to leukemia patients of the same cell type and should be imaged according to this guideline section.
- This section does not apply to patients with mature B-cell histology (primarily Burkitt’s in children). Please refer to PEDONC-5.3 Pediatric Aggressive Mature B-Cell Non-Hodgkin Lymphomas (NHL) for guidelines for these patients.
- CXR should be performed to evaluate for mediastinal mass in suspected cases or upon initial diagnosis.
 - If mediastinal widening is seen on CXR, CT Chest with contrast (CPT®71260) is indicated immediately to evaluate for airway compression and anesthesia safety prior to attempting histologic diagnosis.
 - Patients with known or strongly suspected T-cell histology can have CT Neck (CPT® 70491), Chest (CPT®71260) and CT Abdomen/Pelvis (CPT®74177) with contrast approved for initial staging purposes.

Additional imaging in lymphoblastic lymphoma:

- Follow up CT to assess response to therapy is indicated only for patients with known bulky nodal disease (usually with T-cell histology) at the end of induction (∼4-6
weeks). Patients with residual masses can be evaluated with every new therapy phase (Consolidation, Interim Maintenance, etc., generally every 8-12 weeks) until disease resolution is seen.

- PET/CT (CPT® 78815) can be approved when residual mass ≥8 mm in diameter is present on recent CT imaging and there is documentation of how PET findings will affect immediate treatment decision making. These requests should be forwarded for Medical Director review.

- Once CT imaging shows no evidence of disease, further surveillance should use CXR or Abdominal ultrasound (CPT® 76700) only, as indicated by site(s) of bulky disease present at diagnosis.
- Patients with persistent residual masses can have CT of all involved bulky nodal areas performed as part of an end of therapy evaluation.

Immunosuppression during ALL therapy and imaging ramifications:

- ALL patients are severely immunocompromised during the first 4-6 weeks of treatment (Induction) and any conventional imaging request to evaluate for infectious complications during this time frame should be approved immediately.
- Imaging requests for infectious disease concerns for ALL patients with absolute neutrophil count (ANC) <500 or inconclusive findings on chest x-ray or US at any ANC during active treatment should be approved as requested.
- Additionally, patients may have therapy-induced hypogammaglobulinemia which requires supplemental intravenous immune globulin (IVIG) during maintenance therapy. Patients receiving supplemental IVIG should be treated similarly to patients with ANC <500 with regards to imaging for infectious disease.

Imaging during therapy for relapsed ALL:

- Relapsed ALL patients are treated with very intensive chemotherapy regimens and spend the majority of their chemotherapy treatment phase in the hospital. Due to the high risk of invasive infections, frequent CT may be indicated to evaluate known sites of invasive fungal infection, and in general these should be approved as requested.
 - Surveillance imaging of asymptomatic patients to detect invasive fungal infection has not been shown to impact patient outcomes. Imaging requests in these circumstances should only be approved when acute clinical decisions will be made based on the imaging.

Imaging of known or suspected osteonecrosis in ALL:

- Osteonecrosis (ON) in ALL patients is a relatively common complication of ALL and its treatment, primary corticosteroids. Approximately 3% of younger children and 12-15% of adolescents are affected by ON at some point during therapy. The peak incidence occurs approximately one year from the time of diagnosis.
 - For patients with symptoms suggesting osteonecrosis, MRI without contrast or without and with contrast of the affected joint(s) can be approved.
 - CT without contrast can be approved when MRI is contraindicated or unavailable.
Screening MRI of asymptomatic patients age ≤10 years to detect osteonecrosis has not been shown to impact patient outcomes, and it is not standard to alter treatment based on imaging findings alone without symptoms.

- A single screening MRI Bilateral Hips (CPT® 73721 or 73723 with modifier -50) can be approved 6-9 months after diagnosis for patients age ≥11 years.

If osteonecrosis is detected on initial MRI, corticosteroids are often withheld during maintenance chemotherapy (but continued in earlier phases of therapy).

In patients whose symptoms have resolved and are still receiving active treatment, repeat MRI without contrast of the affected joint(s) can be approved every 2 cycles of maintenance (~every 6 months) if reintroduction of corticosteroids is being considered.

MRI without contrast of the affected joint(s) can be approved if requested for preoperative planning in patients undergoing core decompression.

See PEDONC-19.4 Osteonecrosis in Long Term Cancer Survivors for information on osteonecrosis in ALL patients who have completed therapy.

PEDONC-3.3 Acute Myeloid Leukemia (AML)

The majority of AML patients do not have any bulky disease and routine advanced imaging is not necessary. Advanced imaging may be indicated for rare patients with bulky tumor masses (chloromas) noted on physical examination or other imaging such as plain film or ultrasound.

- AML patients are treated with very intensive chemotherapy regimens and spend the majority of their chemotherapy treatment phase in the hospital. Due to the high risk of invasive infections, frequent CT imaging may be indicated to evaluate known sites of invasive fungal infection, and in general these should be approved as requested.

 - Surveillance imaging of asymptomatic patients to detect invasive fungal infection has not been shown to impact patient outcomes. Imaging requests in these circumstances should only be approved when acute clinical decisions will be made based on the imaging.

References

<table>
<thead>
<tr>
<th>PEDONC 4</th>
<th>PEDIATRIC CNS TUMORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 –</td>
<td>PEDIATRIC CNS TUMORS GENERAL CONSIDERATIONS</td>
</tr>
<tr>
<td>4.2 –</td>
<td>INTRACRANIAL LOW GRADE GLIOMAS (LGG)</td>
</tr>
<tr>
<td>4.3 –</td>
<td>HIGH GRADE GLIOMAS (HGG)</td>
</tr>
<tr>
<td>4.4 –</td>
<td>MEDULLOBLASTOMA (MDB), SUPRATENTORIAL PRIMITIVE NEUROECTODERMAL TUMORS (SPNET), AND PINEOBLASTOMA</td>
</tr>
<tr>
<td>4.5 –</td>
<td>ATYPICAL TERATOID/RHABDOID TUMORS (ATRT)</td>
</tr>
<tr>
<td>4.6 –</td>
<td>PINEOCYTOMAS</td>
</tr>
<tr>
<td>4.7 –</td>
<td>CNS GERMINOMAS AND NON-GERMINOMATOUS GERM CELL TUMORS (NGGCT)</td>
</tr>
<tr>
<td>4.8 –</td>
<td>EPENDYMOMA</td>
</tr>
<tr>
<td>4.9 –</td>
<td>MALIGNANT TUMORS OF THE SPINAL CORD</td>
</tr>
<tr>
<td>4.10 –</td>
<td>CRANIOPHARYNGIOMA AND PITUITARY TUMORS</td>
</tr>
<tr>
<td>4.11 –</td>
<td>PRIMARY CNS LYMPHOMA</td>
</tr>
<tr>
<td>4.12 –</td>
<td>MENINGIOMAS</td>
</tr>
<tr>
<td>4.13 –</td>
<td>CHOROID PLEXUS TUMORS</td>
</tr>
</tbody>
</table>
PEDOnc-4.1 Pediatric CNS Tumors General Considerations

Central nervous system tumors are the second most common form of childhood cancer, accounting for ~20% of all pediatric malignancies.

<table>
<thead>
<tr>
<th>Red Flag Symptoms Raising Suspicion for CNS Tumors Include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>any headache complaint from a child age ≤5 years</td>
</tr>
<tr>
<td>headaches awakening from sleep</td>
</tr>
<tr>
<td>focal findings on neurologic exam</td>
</tr>
<tr>
<td>clumsiness (common description of gait or coordination problems in young children)</td>
</tr>
<tr>
<td>headaches associated with morning nausea/vomiting</td>
</tr>
<tr>
<td>new onset of seizure activity with focal features</td>
</tr>
<tr>
<td>papilledema on physical exam</td>
</tr>
</tbody>
</table>

✔ MRI is the preferred imaging modality for all pediatric CNS tumors. The primary imaging study for pediatric brain tumors is MRI Brain without and with contrast (CPT®70553).
 o For children able to undergo MRI without sedation, MRI Brain without contrast (CPT®70551) can be approved if requested for initial evaluation of suspected CNS tumor.
 o Younger patients requiring sedation for MRI should have their initial MRI performed without and with contrast in order to avoid a second anesthesia exposure.

✔ CT can be approved for evaluation of ventriculomegaly or other operative considerations, or for children who cannot undergo MRI safely.
 o Because of the significant percentage of pediatric CNS tumors occurring in the posterior fossa, CT is not a recommended study for evaluation of pediatric headache when brain tumor is clinically suspected. MRI should be used as first line imaging in these cases.
 o CT should not be used in place of MRI to avoid sedation in young children when red flag symptoms for CNS tumors are present
 o CT can also be approved for evaluation of headaches related to head trauma or evaluation of skull or facial bone abnormalities

✔ MRA or CTA are not routinely indicated in pediatric CNS tumors but can be approved for preoperative planning or to clarify inconclusive findings on MRI or CT.

✔ Definitive imaging should be completed prior to considering biopsy given the high degree of morbidity associated with operating on the CNS.
Occasionally biopsy is not necessary because the imaging findings provide a definitive diagnosis. Examples include diffuse intrinsic pontine glioma and optic pathway gliomas in a patient with known neurofibromatosis.

Perioperative Imaging Frequency

- Children may undergo very frequent imaging in the immediate perioperative period around resection or debulking of a CNS tumor due to the small anatomic spaces involved. Requests for imaging during this time period to specifically evaluate postoperative course or ventriculoperitoneal shunt functioning should, in general, be approved as requested.
- A one-time MRI Brain without and with contrast (CPT®70553) can be approved in the immediate preoperative period (even if another study has already been completed) to gain additional information which can be important in optimizing patient outcomes, such as:
 - Completion of additional specialized MRI sequences such as diffusion-tensor imaging, perfusion imaging, tractography, or other sequences not reported under a separate CPT® code but not part of a routine MRI Brain series
 - Repeat MRI Brain that is being requested solely for loading into operative navigation software should not be requested as a diagnostic code, but can be approved under a treatment planning code (CPT® 76498). These requests should be forwarded for Medical Director review.

MR Spectroscopy (MRS, CPT®76390)

NOTE: Some payors have specific restrictions on MR Spectroscopy, and those coverage policies may supersede the recommendations for MRS in these guidelines.

- MRS is only supported for use in brain tumors of specified histologies where diagnostic accuracy has been established in peer-reviewed literature
 - See diagnosis-specific guidelines for MRS indications
- MRS is considered investigational/experimental for all other histologies and indications not listed in a diagnosis-specific guideline section
- MR Spectroscopy is not indicated for routine surveillance
- Requests for MRS should be forwarded for Medical Director review

PET Brain Imaging (CPT®78608 and 78609)

NOTE: Some payors have specific restrictions on PET Brain Metabolic Imaging, and those coverage policies may supersede the recommendations for this study in these guidelines.

- PET Brain Metabolic imaging (CPT®78608) is only supported for use in brain tumors of specified histologies where diagnostic accuracy has been established in peer-reviewed literature
See diagnosis-specific guidelines for PET indications
✓ PET Brain Metabolic imaging is considered investigational/experimental for all other histologies and indications not listed in a diagnosis-specific guideline section
✓ PET Brain Perfusion imaging (CPT® 78609) is not indicated in the evaluation or management of primary CNS tumors
✓ Fusion PET/CT studies (CPT® 78814, 78815, or 78816) are not indicated in the evaluation or management of primary CNS tumors
✓ PET Brain Metabolic is not indicated for routine surveillance
✓ Requests for PET Brain Metabolic should be forwarded for Medical Director review

PEDONC-4.2 Intracranial Low Grade Gliomas (LGG)

Account for 40-60% of pediatric CNS tumors. These tumors are defined as having a WHO histologic grade of I or II (out of IV), can occur anywhere in the CNS, and includes the following tumors:
- Pilocytic Astrocytoma
- Fibrillary (or Diffuse) Astrocytoma
- Optic Pathway Gliomas
- Pilomyxoid Astrocytoma
- Oligodendroglioma
- Oligoastrocytoma
- Oligodendrocytoma
- Subependymal Giant Cell Astrocytoma (SEGA)
- Ganglioglioma
- Gangliocytoma
- Dysembryoplastic infantile astrocytoma (DIA)
- Dysembryoplastic infantile ganglioglioma (DIG)
- Dysembryoplastic neuroepithelial tumor (DNT)
- Tectal plate gliomas
- Cervicomedullary gliomas
- Pleomorphic xanthoastrocytoma (PXA)
- Any other glial tumor with a WHO grade of I or II

✓ PET Brain Metabolic Imaging (CPT® 78608) can be approved in the following circumstances:
 - to determine need for biopsy when transformation to high grade glioma is suspected based on clinical symptoms or recent MRI findings
 - to evaluate a brain lesion of indeterminate nature when the PET findings will be used to determine whether biopsy/resection can be safely postponed

✓ MR Spectroscopy (MRS, CPT® 76390) can be approved in the following circumstances:
 - to distinguish low grade from high grade gliomas
o to evaluate a brain lesion of indeterminate nature when the MRS findings will be used to determine whether biopsy/resection can be safely postponed
o to distinguish radiation-induced tumor necrosis from progressive disease within 18 months of completing radiotherapy.

NOTE: Some payors have specific restrictions on PET Brain Metabolic Imaging and/or MR Spectroscopy, and those coverage policies may supersede the recommendations for PET Brain or MRS in these guidelines

Low Grade Gliomas Initial Staging

✓ MRI Brain without and with contrast (CPT®70553) is indicated for all LGG

✓ MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved for all LGG patients if requested, and spinal imaging is particularly recommended for patients with:
 o Multicentric tumors
 o Intracranial leptomeningeal disease
 o Clinical signs or symptoms suggesting spinal cord involvement
 o MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain.

✓ Patients with neurofibromatosis and small optic pathway tumors may not undergo biopsy or resection and will proceed directly to treatment or surveillance.

Low Grade Gliomas Treatment Response

✓ Children who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines
 o Children with neurofibromatosis and small optic pathway gliomas may be observed without specific treatment and should be imaged according to surveillance guidelines for LGG.

✓ Patients age >10 years with incompletely resected tumors usually receive adjuvant radiation therapy and can have a single MRI Brain without and with contrast (CPT®70553) approved at completion of radiotherapy and should then be imaged according to surveillance guidelines

✓ Patients age ≤10 years with incompletely resected tumors are commonly treated with chemotherapy and can have MRI Brain without and with contrast (CPT®70553) approved every 2 cycles during active treatment and at the end of planned chemotherapy

✓ Spinal imaging is not indicated during treatment response for patients without evidence of spinal cord involvement at initial diagnosis
Spinal imaging is appropriate every 2 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI

Low Grade Gliomas Surveillance

- MRI Brain without and with contrast (CPT®70553) can be approved every 3 months for 2 years, then every 6 months for 3 years, then annually until 10 years after completion of therapy as late progressions can occur
 - Patients with documented residual masses can have annual imaging until 20 years after completion of therapy due to the risk of late transformation of these tumors
 - For additional imaging guidelines for patients in long term follow up after CNS tumor treatment that included radiation therapy, see **PEDONC-19.3 SMN—CNS Tumors**

- MRI Spine is not indicated during surveillance in patients without prior history of spinal involvement except to evaluate symptoms suspicious for spinal cord recurrence

- For patients with cord involvement at diagnosis, MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved every 3 months for 2 years, then every 6 months for 3 years, then annually until 10 years after completion of therapy as late progressions can occur
 - MRI Spine with contrast only can be approved (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) if being performed immediately following a contrast-enhanced MRI Brain

- MR Spectroscopy and PET Brain Metabolic are not indicated for routine surveillance

PEDONC-4.3 High Grade Gliomas (HGG)

Rare in children compared with the adult population, but represent 10-20% of pediatric CNS tumors. Prognosis is very poor, and survival significantly beyond 3 years from diagnosis is rare, even with complete surgical resection at initial diagnosis.

These tumors are defined as having a WHO histologic grade of III or IV (out of IV can occur anywhere in the CNS (though the majority occur in the brain), and includes the following tumors:

- Anaplastic astrocytoma
- Glioblastoma multiforme
- Diffuse intrinsic pontine glioma (DIPG, or “brainstem glioma”)
- Gliomatosis cerebri
- Gliosarcoma
- Anaplastic oligodendroglioma
- Anaplastic ganglioglioma
- Anaplastic mixed glioma
- Anaplastic mixed ganglioneuronal tumors
- Any other glial tumor with a WHO grade of III or IV
PET Brain Metabolic Imaging (CPT®78608) can be approved in the following circumstances:
 o to distinguish radiation-induced tumor necrosis from progressive disease within 18 months of completing radiotherapy
 o to evaluate inconclusive MRI findings when the PET findings will be used to determine need for biopsy or change in therapy, including a change from active therapy to surveillance
 o to evaluate a brain lesion of indeterminate nature when the PET findings will be used to determine whether biopsy/resection can be safely postponed
 o PET Brain is not indicated in gliomas occurring in the brain stem due to poor uptake and lack of impact on patient outcomes

MR Spectroscopy (MRS, CPT®76390) can be approved in the following circumstances:
 o to distinguish low grade from high grade gliomas
 o to evaluate a brain lesion of indeterminate nature when the MRS findings will be used to determine whether biopsy/resection can be safely postponed
 o to distinguish radiation-induced tumor necrosis from progressive disease within 18 months of completing radiotherapy.

NOTE: Some payors have specific restrictions on MR Spectroscopy, and those coverage policies may supersede the recommendations for MRS in these guidelines

High Grade Gliomas Initial Staging

MRI Brain without and with contrast (CPT®70553) is indicated for all HGG

MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved for all HGG patients if requested, and spinal imaging is particularly recommended for patients with:
 o Multicentric tumors
 o Intracranial leptomeningeal disease
 o Clinical signs or symptoms suggesting spinal cord involvement
 o MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

High Grade Gliomas Treatment Response

Patients who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines
✓ If receiving adjuvant radiotherapy after a completely resected tumor, an additional MRI Brain without and with contrast (CPT®70553) can be approved at the end of radiotherapy

✓ Patients with incompletely resected tumors are commonly treated with chemotherapy and can have MRI Brain without and with contrast (CPT®70553) approved every 2 cycles during active treatment and at the end of planned chemotherapy

✓ Spinal imaging is not indicated during treatment response for patients without evidence of spinal cord involvement at initial diagnosis

✓ Spinal imaging is appropriate every 2 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI

High Grade Gliomas Surveillance

✓ MRI Brain without and with contrast (CPT®70553) can be approved every 3 months for 3 years, then every 6 months for 2 years, then annually until 10 years after completion of therapy
 o Patients with documented residual masses can have annual imaging until 20 years after completion of therapy due to the risk of late transformation of these tumors
 o For additional imaging guidelines for patients in long term follow up after CNS tumor treatment that included radiation therapy, see [PEDONC-19.3 SMN—CNS Tumors](#)

✓ MRI Spine is not indicated during surveillance in patients without prior history of spinal involvement except to evaluate symptoms suspicious for spinal cord recurrence

✓ For patients with cord involvement at diagnosis, MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved every 3 months for 3 years, then every 2 months for 3 years, then annually until 10 years after completion of therapy as late progressions rarely occur
 o MRI Spine can be performed with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) if being performed immediately following a contrast-enhanced MRI Brain

✓ MR Spectroscopy and PET Brain Metabolic are not indicated for routine surveillance
PEDONC-4.4 Medulloblastoma (MDB), Supratentorial Primitive Neuroectodermal Tumors (sPNET), and Pineoblastoma

Account for 15-25% of pediatric CNS tumors, prognosis is generally favorable. Leptomeningeal spread is common and can occur after initial diagnosis.

Includes the Following Tumors:

- Medulloblastoma and Pineoblastoma
- sPNET
 - Medulloepithelioma
 - Cerebral or cerebellar neuroblastoma
 - Cerebral or cerebellar ganglioneuroblastoma
 - Ependymoblastoma

Risk Assessment is Important in Determining Optimal Treatment

High risk features include the following:

- Spinal metastasis (including cytology positive only)
- Multifocal intracranial tumors
- Anaplastic histology
- All sPNET and pineoblastomas
- >1.5 cm² residual tumor area on postoperative MRI and age <3 years

Patients without any high risk features are considered “Average Risk”

- PET Brain Metabolic Imaging (CPT®78608) can be approved in the following circumstances:
 - to distinguish radiation-induced tumor necrosis from progressive disease within 18 months of completing radiotherapy
 - to evaluate inconclusive MRI findings when the PET findings will be used to determine need for biopsy or change in therapy, including a change from active therapy to surveillance
 - to evaluate a brain lesion of indeterminate nature when the PET findings will be used to determine whether biopsy/resection can be safely postponed

- MR Spectroscopy (CPT®76390) can be approved in the following circumstances:
 - to evaluate a brain lesion of indeterminate nature when the MRS findings will be used to determine whether biopsy/resection can be safely postponed

Medulloblastoma, sPNET, Pineoblastoma Initial Staging

- Preoperative MRI Brain without and with contrast (CPT®70553) is indicated for all patients
- Postoperative MRI Brain without and with contrast (CPT®70553) is required (preferably within 48 hours of surgery) to quantify residual tumor volume
MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is required for all patients either preoperatively or within 28 days postoperatively
 - MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Medulloblastoma, sPNET, Pineoblastoma Treatment Response

Patients generally proceed to chemoradiotherapy within 31 days of surgical resection. All patients receive adjuvant chemotherapy lasting 6-12 months that begins~6 weeks after completion of chemoradiotherapy.

MRI Brain without and with contrast (CPT®70553) and MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is appropriate at the start of adjuvant chemotherapy and every 2 cycles until therapy is completed
 - MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
 - Children age <3 years are often treated with multiple cycles of high dose chemotherapy with autologous stem cell rescue in lieu of radiotherapy, and disease evaluations may occur prior to each cycle (every 4-6 weeks) if needed for response determination.

End of treatment evaluation should include MRI Brain without and with contrast (CPT®70553) and MRI Spine (with or without and with contrast)

Medulloblastoma, sPNET, Pineoblastoma Surveillance

- MRI Brain without and with contrast (CPT®70553) can be approved every 3 months for 2 years, then every 6 months for 3 years, then annually until 8 years after completion of therapy
- MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved every 3 months for 2 years, then every 6 months for 3 years, then annually until 8 years after completion of therapy
 - MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
- Death from recurrent disease later than 8 years from the end of therapy is rare and routine advanced imaging is not warranted for these patients
 - For additional imaging guidelines for patients in long term follow up after CNS tumor treatment that included radiation therapy, see **PEDONC-19.3 SMN—CNS Tumors**
- MR Spectroscopy and PET Brain Metabolic are not indicated for routine surveillance
PEDONC-4.5 Atypical Teratoid/Rhabdoid Tumors (ATRT)
Highly aggressive tumor occurring primarily in very young children that has a clinical presentation very similar to medulloblastoma with a much higher rate of leptomeningeal spread. Metastases can occur outside the CNS, and associated tumors can also arise in the kidneys (Malignant Rhabdoid Tumor of the Kidney, MRT). Rhabdoid malignancies occurring outside the CNS should be imaged according to PEDONC-7.6 Malignant Rhabdoid Tumor of the Kidney (MRT) and Other Extracranial Sites.

Overall prognosis is poor, with <20% of patients surviving beyond 2 years from diagnosis.

Atypical Teratoid/Rhabdoid Tumor Initial Staging
✓ Preoperative MRI Brain without and with contrast (CPT®70553) is indicated for all patients
✓ Postoperative MRI Brain without and with contrast (CPT®70553) is required (preferably within 48 hours of surgery) to quantify residual tumor volume
✓ MRI Spine without and with contrast (cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is required for all patients either preoperatively or within 28 days postoperatively
 o MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
✓ Renal US (CPT®76770) is indicated to evaluate for renal masses at initial diagnosis
 o CT Abdomen/Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) can be approved if a renal lesion is detected on US.
 o If a renal lesion is also present, imaging guidelines for MRT should be followed (See: PEDONC-7.6 Malignant Rhabdoid Tumor of the Kidney (MRT) and Other Extracranial Sites)
✓ PET Brain Metabolic does not have a defined role in the evaluation of ATRT at this time
✓ MR Spectroscopy (CPT® 76390) can be approved in the following circumstances:
 o to evaluate a brain lesion of indeterminate nature when the MRS findings will be used to determine whether biopsy/resection can be safely postponed
Atypical Teratoid/Rhabdoid Tumor Treatment Response

Patients generally proceed to induction chemotherapy shortly following surgical resection or biopsy.

- MRI Brain without and with contrast (CPT®70553) and MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) is appropriate after every 2 cycles of induction chemotherapy
 - MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
 - Children with ATRT are often treated using consolidation chemotherapy with 2-4 cycles of high dose chemotherapy with autologous stem cell rescue. Disease evaluation is indicated following the end of the planned stem cell rescues but may occur prior to each cycle (every 4-6 weeks) if needed for response determination.

- Following completion of chemotherapy some patients will proceed to radiotherapy.
 MRI performed at the end of consolidation therapy should serve as the diagnostic MRI prior to radiotherapy.

- MRI Brain without and with contrast (CPT®70553) and MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) is appropriate at the end of all planned therapy
 - MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain.

Atypical Teratoid/Rhabdoid Tumor Surveillance

- MRI Brain without and with contrast (CPT®70553) can be approved every 3 months for 2 years, then every 6 months for 3 years, then annually until 8 years after completion of therapy

- MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved every 3 months for 2 years, then every 6 months for 3 years, then annually until 8 years after completion of therapy
 - MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain.

- Death from recurrent disease later than 8 years from the end of therapy is rare and routine advanced imaging is not warranted for these patients.
 - For additional imaging guidelines for patients in long term follow up after CNS tumor treatment that included radiation therapy, see PEDONC-19.3 SMN—CNS Tumors

- MR Spectroscopy is not indicated for routine surveillance
PEDONC-4.6 Pineocytomas
Low grade malignancy that is similar in presentation to LGG.

PET Brain Metabolic imaging and MR Spectroscopy do not have a defined role in the evaluation of pineocytoma.

Pineocytomas Initial Staging
- MRI Brain without and with contrast (CPT®70553) is indicated for all patients
- MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved for patients with:
 - Multicentric tumors
 - Atypical histology including pineoblastoma-like elements
 - Clinical signs or symptoms suggesting spinal cord involvement
 - MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Pineocytomas Treatment Response
- Surgical resection is curative for most patients. Patients who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines
- Patients with incompletely resected tumors may receive adjuvant radiation therapy and can have a single MRI Brain without and with contrast (CPT®70553) approved at completion of radiotherapy and should then be imaged according to surveillance guidelines
 - Spinal imaging is not indicated for patients without evidence of spinal cord involvement at initial diagnosis
 - Spinal imaging is appropriate at completion of radiotherapy for patients with measurable spinal cord disease on MRI

Pineocytomas Surveillance
- MRI Brain without and with contrast (CPT®70553) can be approved every 3 months for 1 year, then every 4 months for 1 year, then every 6 months for 1 year, then annually until 10 years after completion of therapy as late progressions can occur
 - For additional imaging guidelines for patients in long term follow up after CNS tumor treatment that included radiation therapy, see **PEDONC-19.3 SMN—CNS Tumors**
- MRI Spine is not indicated during surveillance in patients without prior history of spinal involvement except to evaluate symptoms suspicious for spinal cord recurrence
- For patients with cord involvement at diagnosis, MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved every 3 months for 1 year, then every 4 months for 1 year, then every 6 months for 1
year, then annually until 10 years after completion of therapy as late progressions can occur
- MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

PEDONC-4.7 CNS Germinomas and Non-Germinomatous Germ Cell Tumors (NGGCT)

More common in older school age children and younger adolescents, but can occur throughout the pediatric age range. Although leptomeningeal spread is common, prognosis is excellent due to high sensitivity to chemotherapy and radiotherapy.

<table>
<thead>
<tr>
<th>Includes the Following Tumors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>o CNS Germinoma</td>
</tr>
<tr>
<td>o Non-Germinomatous Germ Cell Tumors (NGGCT)</td>
</tr>
<tr>
<td>• Embryonal carcinoma</td>
</tr>
<tr>
<td>• Yolk sac tumor</td>
</tr>
<tr>
<td>• Choriocarcinoma</td>
</tr>
<tr>
<td>• Teratoma</td>
</tr>
<tr>
<td>• Mixed germ cell tumor</td>
</tr>
</tbody>
</table>

✓ PET Metabolic Brain imaging does not have a defined role in the evaluation of CNS GCT.

✓ MR Spectroscopy (CPT® 76390) can be approved in the following circumstances:
 - to evaluate a brain lesion of indeterminate nature when the MRS findings will be used to determine whether biopsy/resection can be safely postponed

CNS Germinoma & NGGCT Initial Staging

✓ MRI Brain without and with contrast (CPT®70553) is indicated for all patients

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is indicated for all patients
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

CNS Germinoma & NGGCT Treatment Response

Patients generally proceed to chemotherapy shortly following surgical resection or biopsy and will usually receive 2-4 cycles.

✓ MRI Brain without and with contrast (CPT®70553) is appropriate after every 2 cycles of induction chemotherapy
MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is appropriate at the end of induction chemotherapy for patients with localized intracranial tumors
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
 - Spinal imaging is appropriate every 2 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI

Following completion of chemotherapy some patients will proceed to second-look surgery and/or radiotherapy
 - MRI of all known sites of measurable disease can be performed prior to surgery and prior to radiotherapy, if necessary

MRI Brain without and with contrast (CPT®70553) and MRI Spine (with OR without and with contrast) is appropriate at the end of all planned therapy

CNS Germinoma & NGGCT Surveillance

MRI Brain without and with contrast (CPT®70553) can be approved every 3 months for 1 year, then every 4 months for 1 year, then every 6 months for 1 year, then annually until 5 years after completion of therapy
 - For additional imaging guidelines for patients in long term follow up after CNS tumor treatment that included radiation therapy, see PEDONC-19.3 SMN—CNS Tumors

MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved every 3 months for 1 year, then every 4 months for 1 year, then every 6 months for 1 year, then annually until 5 years after completion of therapy
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

PEDONC-4.8 Ependymoma

Occur primarily intracranially, roughly 2/3 in the posterior fossa. Overall prognosis is very good, with supratentorial tumors faring better.

Surgery is the primary treatment modality. Radiotherapy +/- chemotherapy is used for:
 - Incompletely resected tumors
 - Anaplastic histology
 - Infratentorial location

PET Brain Metabolic imaging does not have a defined role in the evaluation of ependymoma.

MR Spectroscopy (CPT® 76390) can be approved in the following circumstances:
to evaluate a brain lesion of indeterminate nature when the MRS findings will be used to determine whether biopsy/resection can be safely postponed

Ependymoma Initial Staging

✓ MRI Brain without and with contrast (CPT®70553) is indicated for all patients

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is indicated for all patients
 o MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Ependymoma Treatment Response

✓ Patients who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines

✓ Patients with incomplete resection or high risk histology receiving adjuvant radiation therapy can have a single MRI Brain without and with contrast (CPT®70553) approved at completion of radiotherapy and should then be imaged according to surveillance guidelines

✓ Patients treated with chemotherapy can have MRI Brain without and with contrast (CPT®70553) approved every 2 cycles during active treatment and at the end of planned chemotherapy

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is appropriate at the end of induction chemotherapy for patients with localized intracranial tumors
 o MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
 o Spinal imaging is appropriate every 2 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI

✓ Following completion of chemotherapy some patients will proceed to second-look surgery and/or radiotherapy
 o MRI of all known sites of measurable disease can be performed prior to surgery and prior to radiotherapy, if necessary

✓ MRI Brain without and with contrast (CPT®70553) and MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is appropriate at the end of all planned therapy
 o MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
Ependymoma Surveillance

✓ MRI Brain without and with contrast (CPT®70553) can be approved every 4 months for 3 years, then every 6 months for 2 years after completion of therapy
 o For additional imaging guidelines for patients in long term follow up after CNS tumor treatment that included radiation therapy, see PEDONC-19.3 SMN—CNS Tumors

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved annually for 2 years after completion of therapy for patients with no history of spinal cord involvement

✓ For patients with cord involvement at diagnosis, MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved every 4 months for 3 years, then every 6 months for 2 years after completion of therapy
 o MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

✓ MR Spectroscopy is not indicated for routine surveillance

PEDONC-4.9 Malignant Tumors of the Spinal Cord

Treatment principles are the same as tumors of the brain, and should follow imaging guidelines according to the specific histologic type.

Multiple spinal cord tumors should raise suspicion for neurofibromatosis.

Common histologies of primary spinal cord tumor in children include:
 o Low Grade Glioma, see PEDONC-4.2 Low Grade Glioma for guidelines
 o Ependymoma, see PEDONC-4.8 Ependymoma for guidelines
 o Any type can occur, but other histologies are rare

✓ Primary site imaging should always include MRI Spine without and with contrast of all involved levels (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158)
 o Entire spine imaging may be indicated based on the histologic type

✓ MRI Brain without and with contrast (CPT®70553) is indicated at initial diagnosis, but may be not be necessary during treatment response and surveillance
 o Given the rarity of primary spinal cord tumors in children, MRI Brain requests should, in general, be approved for surveillance after recent evaluation by a physician with significant training and/or experience in pediatric spinal cord tumors (most commonly a pediatric neurosurgeon or pediatric oncologist) as the need for intracranial surveillance is highly individualized
✓ Asymptomatic surveillance imaging should generally end at the time point appropriate for the specific tumor type

PEDONC-4.10 Craniopharyngioma and Pituitary Tumors

Imaging guidelines and treatment approaches for pediatric pituitary tumors other than craniopharyngioma are consistent with those used for adults with pituitary tumors. For these tumors follow guidelines in **HD-19-Pituitary**

Craniopharyngiomas are less common, accounting for 6-8% of pediatric CNS tumors. Most commonly affects children in the preadolescent ages.

✓ PET Brain Metabolic imaging and MR Spectroscopy do not have a defined role in the evaluation of Craniopharyngioma.

Craniopharyngioma Initial Staging

✓ MRI Brain without and with contrast (CPT®70553) is indicated for all patients
✓ CT imaging can demonstrate calcifications but is usually unnecessary if MRI is completed
✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved for patients with:
 o Multicentric tumors
 o Clinical signs or symptoms suggesting spinal cord involvement
 o MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Craniopharyngioma Treatment Response

✓ Surgical resection is curative for many patients. Patients who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines.

✓ Patients with incomplete resection and receiving adjuvant radiation therapy can have a single MRI Brain (CPT®70553) approved at completion of radiotherapy and should then be imaged according to surveillance guidelines

✓ Rare patients treated with chemotherapy can have MRI Brain without and with contrast (CPT®70553) approved every 2 cycles during active treatment and at the end of planned chemotherapy
 o Spinal imaging is appropriate every 2 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI
Craniopharyngioma Surveillance

✓ MRI Brain without and with contrast (CPT®70553) can be approved every 3 months for 1 year, then every 4 months for 1 year, then every 6 months for 1 year, then annually until 10 years after completion of therapy as late progressions can occur
 o For additional imaging guidelines for patients in long term follow up after CNS tumor treatment that included radiation therapy, see PEDONC-19.3 SMN—CNS Tumors

✓ MRI Spine is not indicated during surveillance in patients without prior history of spinal involvement except to evaluate symptoms suspicious for spinal cord recurrence

PEDONC-4.11 Primary CNS Lymphoma
Primary CNS Lymphoma is a solitary or multifocal mass occurring in the brain without evidence of systemic (bone marrow or lymph node) involvement. Usually associated with immunodeficiency, this is a very rare entity in pediatrics accounting for <0.1% of pediatric malignancies, so age-specific guidelines have not been established.

Primary CNS lymphoma imaging indications in pediatric patients are identical to those for adult patients. See ONC-2.7 CNS Lymphoma for imaging guidelines.

CNS Lymphomas also involving bone marrow and/or lymph nodes should be imaged according to: PEDONC-5.3 Pediatric Aggressive Mature B-Cell Non-Hodgkin Lymphomas (NHL).

PEDONC-4.12 Meningiomas
Account for 1-3% of pediatric CNS tumors. Usually associated with neurofibromatosis type 2 (NF-2) or prior therapeutic radiation exposure to the brain. Lifetime risk may be as high as 20% for young children receiving whole brain radiotherapy, most commonly occurring 15-20 years after radiation exposure.

Meningioma imaging indications in pediatric patients are identical to those for adult patients. See ONC-2.8 CNS Meningioma for imaging guidelines.
PEDONC-4.13 Choroid Plexus Tumors
As a group these account for 1-4% of pediatric CNS tumors, and 70% of choroid plexus tumors present within the first 2 years of life.

Includes the following tumors:
- Choroid plexus papilloma
- Choroid plexus adenoma, or atypical choroid plexus papilloma
- Choroid plexus carcinoma

✓ PET Metabolic Brain imaging does not have a defined role in the evaluation of choroid plexus tumors.

✓ MR Spectroscopy (CPT® 76390) can be approved in the following circumstances:
 - to evaluate a brain lesion of indeterminate nature when the MRS findings will be used to determine whether biopsy/resection can be safely postponed

Choroid Plexus Papilloma
Choroid plexus papillomas outnumber other choroid plexus tumors by 4-5X. These ventricular tumors commonly present with hydrocephalus caused by increased CSF production, resulting in signs of increased intracranial pressure. Appearance on MRI Brain without and with contrast (CPT®70553) is typical, and they are usually treated by excision.

✓ Regrowth is rare, but repeat MRI Brain without and with contrast (CPT®70553) is indicated if return of hydrocephalus is suspected or seen on CT imaging

Choroid Plexus Adenoma or Atypical Choroid Plexus Papilloma
These are extremely rare tumors with features midway in the malignant spectrum between papillomas and carcinomas. They are more prone to local invasion, but rarely to metastasis. Presenting symptoms are similar to papillomas. Appearance on MRI Brain with and without contrast (CPT®70553) is typical, and they are usually treated by excision.

✓ Spinal imaging may be approved if requested at initial diagnosis

✓ Regrowth is rare, but repeat MRI Brain without and with contrast is indicated if return of hydrocephalus is suspected or seen on CT imaging

Choroid Plexus Carcinoma
This is a very aggressive malignancy, with high rates of metastasis to other parts of the CNS. Prognosis is significantly less favorable than for papillomas with overall survival rates of 35-40%.
Choroid Plexus Carcinoma Initial Staging

- MRI Brain without and with contrast (CPT®70553) is indicated for all patients
- MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is indicated for all patients
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Choroid Plexus Carcinoma Treatment Response

- Surgical resection is curative for many patients. Patients who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines.
- Patients with incomplete resection and receiving adjuvant radiation therapy can have a single MRI approved at completion of radiotherapy and should then be imaged according to surveillance guidelines
- Patients treated with chemotherapy can have MRI Brain without and with contrast (CPT®70553) approved every 2 cycles during active treatment and at the end of planned chemotherapy
- MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is appropriate at the end of induction chemotherapy for patients with localized intracranial tumors
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
 - Spinal imaging is appropriate every 2 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI
- Following completion of chemotherapy some patients will proceed to second-look surgery and/or radiotherapy
 - MRI of all known sites of measurable disease can be performed prior to surgery and prior to radiotherapy, if necessary
- MRI Brain without and with contrast (CPT®70553) and MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is appropriate at the end of all planned therapy
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
Choroid Plexus Carcinoma Surveillance

- MRI Brain without and with contrast (CPT®70553) can be approved every 4 months for 3 years, then every 6 months for 2 years after completion of therapy
 - For additional imaging guidelines for patients in long term follow up after CNS tumor treatment that included radiation therapy, see **PEDONC-19.3 SMN—CNS Tumors**

- MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved at 12 and 24 months after completion of therapy for patients with no history of spinal cord involvement
 - For patients with cord involvement at diagnosis, MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved every 4 months for 3 years, then every 6 months for 2 years after completion of therapy
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

- MR Spectroscopy is not indicated for routine surveillance

References

PEDONC 5 PEDIATRIC LYMPHOMAS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 – PEDIATRIC LYMPHOMA GENERAL CONSIDERATIONS</td>
<td>65</td>
</tr>
<tr>
<td>5.2 – PEDIATRIC HODGKIN LYMPHOMA (HL)</td>
<td>66</td>
</tr>
<tr>
<td>5.3 – PEDIATRIC AGGRESSIVE MATURE B-CELL NON-HODGKIN LYMPHOMAS (NHL)</td>
<td>67</td>
</tr>
<tr>
<td>5.4 – ANAPLASTIC LARGE CELL LYMPHOMA (ALCL)</td>
<td>69</td>
</tr>
</tbody>
</table>
PEDONC-5.1 Pediatric Lymphoma General Considerations

- Pediatric lymphomas are generally Hodgkin Lymphomas, Aggressive B-Cell Non-Hodgkin Lymphomas, Lymphoblastic Lymphomas, or Anaplastic Large Cell Lymphomas.

- Patients with lymphoblastic lymphoma (even those with bulky nodal disease) are treated using the leukemia treatment plan appropriate to the cell type (B or T cell). These patients should be imaged using guidelines in PEDONC-3.2 Acute Lymphoblastic Leukemia.

- Other histologies are rare in pediatric patients, and should be imaged according to the following guidelines:
 - Follicular lymphoma: ONC-27.3 Follicular Lymphoma
 - Marginal zone or MALT lymphomas: ONC-27.4 Marginal Zone Lymphomas
 - Mantle cell lymphomas: ONC-27.5 Mantle Cell Lymphoma
 - Cutaneous lymphomas: ONC-27.8 Cutaneous Lymphomas
 - Exception: Cutaneous B-Lymphoblastic Lymphoma should be imaged using guidelines in PEDONC-3.2 Acute Lymphoblastic Leukemia
 - Castleman’s Disease: ONC-31.11 Castleman’s Disease

- All CT imaging recommended in this section refers to CT with contrast only.
 - Noncontrast CT imaging has not been shown to be beneficial in the management of pediatric lymphomas
 - Given the limited utility of noncontrast CT imaging in pediatric lymphomas, MRI without OR without and with contrast is recommended in place of CT for patients who cannot tolerate CT contrast due to allergy or impaired renal function

- MRI without and with contrast of symptomatic or previously involved bony areas can be approved in known lymphoma patients without prior plain x-ray or bone scan evaluation
 - Bone scan is inferior to MRI for evaluation of known or suspected bone metastases in lymphoma

- MRI Brain without and with contrast (CPT® 70553) is the preferred study for evaluation of suspected brain metastases in pediatric lymphoma
 - CT Head with (CPT® 70460) or without and with contrast (CPT® 70470) can be approved when MRI is contraindicated
PEDONC-5.2 Pediatric Hodgkin Lymphoma (HL)

Pediatric Hodgkin Lymphoma Initial Staging

✓ All patients should undergo CT Neck (CPT®70491), Chest (CPT®71260), and Abdomen/Pelvis (CPT®74177) as pediatric patients have a high rate of neck and Waldeyer’s ring involvement with Hodgkin lymphoma.

✓ PET/CT (CPT®78815) is indicated for initial staging of all patients, and can be performed prior to biopsy if necessary for patient scheduling.
 o Whole body PET/CT (CPT®78816) may be approved if there is clinical suspicion of skull or distal lower extremity involvement.

✓ CT or MRI of other body areas (see PEDONC-5.1) may be indicated for rare patients based on physical findings or PET/CT results.

Pediatric Hodgkin Lymphoma Treatment Response

✓ Restaging for treatment response can be performed as often as every 2 cycles of chemotherapy.

✓ Both CT of Neck (CPT®70491), Chest (CPT®71260), and Abdomen/Pelvis (CPT®74177) and other previously involved areas AND PET/CT (CPT®78815) can be approved during early treatment response evaluations as decisions about chemotherapy drug selection and radiation treatment are frequently made based on both anatomic (CT-based) and metabolic (PET/CT-based) responses.
 o For patients with low risk (stage IA or IIA) mixed cellularity Hodgkin lymphoma, PET/CT can be performed for treatment response after cycles 1 and 3 instead of cycles 2 and 4.

✓ Once a particular patient has a negative PET/CT, all subsequent treatment response evaluations should use CT only, including end of therapy evaluation.

Pediatric Hodgkin Lymphoma Surveillance

Most patients experiencing recurrence are detected based on physical findings, and frequent CT surveillance imaging of Hodgkin lymphoma after completion of therapy does not improve post-recurrence overall survival.

✓ CT of the Neck (CPT®70491), Chest (CPT®71260), Abdomen/Pelvis (CPT®74177) and other previously involved or currently symptomatic areas should be approved for any patient with clinical symptoms suggesting recurrence.

✓ Patients with stage I or II HL:
 o CT of the Neck/Chest (CPT®70491 and CPT®71260) annually for 2 years after completing therapy.
 o Surveillance at other time points from the end of therapy should use physical exam and CXR only.

✓ Patients with stage III or IV HL:
PEDONC-5.3 Pediatric Aggressive Mature B-Cell Non-Hodgkin Lymphomas (NHL)

Aggressive Mature B-Cell NHL includes all of the following diagnoses, all of which should be imaged according to this section:
- Burkitt’s lymphoma/leukemia (BL)
- Diffuse Large B-Cell Lymphoma (DLBCL)
- Primary Mediastinal Large B-Cell Lymphoma (PMBCL)
- Post-transplant lymphoproliferative disorder (PTLD)
 - Most commonly occurs following solid organ transplantation
- Viral-associated lymphoproliferative disorders
 - Most commonly occurs following hematopoietic stem cell transplantation or in patients with primary immunodeficiency

Pediatric Aggressive Mature B-Cell NHL Initial Staging

CT of the Neck (CPT®70491), Chest (CPT®71260), and Abdomen/Pelvis (CPT®74177)

MRI Brain without and with contrast (CPT®70553) may be indicated if symptoms or extent of disease suggest intracranial extension or metastasis

PET/CT (CPT®78815) is indicated for initial staging for all patients
- Whole body PET/CT (CPT®78816) may be approved if there is clinical suspicion of skull or distal lower extremity involvement.
- Due to the extremely aggressive nature of this group of tumors (the doubling time can be as short as 8 hours) it may not be possible to obtain PET/CT prior to therapy initiation. PET/CT should be approved for treatment response in these cases as these lymphomas are nearly universally FDG-avid.
Pediatric Aggressive Mature B-Cell NHL Treatment Response
✓ Initial treatment is 7 days of low intensity therapy, with early response evaluation determining next steps in therapy using CT with contrast or MRI without and with contrast of previously involved areas performed around Day 6
 o Patients are customarily still inpatient for this evaluation so outpatient requests should be rare for this time point

✓ Following initial response evaluation, restaging for treatment response using CT with contrast or MRI without and with contrast (should be same modality as initial diagnosis if possible) of previously involved areas and PET/CT can be performed as often as every cycle of chemotherapy (~every 3 weeks)

✓ Once a particular patient has a negative PET/CT, all subsequent treatment response evaluations should use CT imaging only, including end of therapy evaluation
 o PET/CT may be indicated to assess disease activity in inconclusive residual masses seen on conventional imaging

Pediatric Aggressive Mature B-Cell NHL Surveillance
Routine asymptomatic surveillance with advanced imaging has not been found to impact patient outcomes as the majority of these patients present clinically at relapse due to the highly aggressive nature of these lymphomas.

✓ CXR and Abdominal ultrasound (CPT®76700) are sufficient to follow asymptomatic patients with residual masses in the chest or abdomen/pelvis. Surveillance imaging with CT or MRI has not been shown to improve patient outcomes following recurrence and is not the standard of care.

✓ CT of the Neck (CPT®70491), Chest (CPT®71260), Abdomen/Pelvis (CPT®74177) and other previously involved or currently symptomatic areas should be approved for any patient with clinical symptoms or laboratory findings suggesting recurrence.
 o PET/CT (CPT® 78815) can be approved for suspected PTLD recurrence with documentation of new palpable nodes, rising LDH, or rising quantitative EBV PCR

✓ PET/CT is not indicated for surveillance, but can be approved to clarify inconclusive findings on conventional imaging to evaluate the need for biopsy to establish recurrence. These requests should be forwarded for Medical Director review.
PEDONC-5.4 Anaplastic Large Cell Lymphoma (ALCL)

Similar in presentation to Hodgkin lymphoma, and may be indistinguishable until immunocytology and molecular studies are complete.

Anaplastic Large Cell Lymphoma Initial Staging

✓ All patients should undergo CT of the Neck/Chest/Abdomen/Pelvis (CPT®70491, CPT®71260, and CPT®74177)

✓ PET/CT (CPT®78815) is indicated for initial staging of all patients, and can be performed prior to biopsy if necessary for patient scheduling.
 o Whole body PET/CT (CPT®78816) may be approved if there is clinical suspicion of skull or distal lower extremity involvement.

✓ CT or MRI of other body areas may be indicated for rare patients based on physical findings or PET/CT results. Rarely patients will have primary tumor sites outside the Neck→Pelvis region, and MRI without and with contrast may be substituted for soft tissue extremity or paraspinal primary masses as necessary.

✓ Bone scan (See PEDONC-1.3) is indicated for patients with bony primary tumors or metastatic disease

Anaplastic Large Cell Lymphoma Treatment response

✓ Restaging for treatment response using CT with contrast or MRI without and with contrast of previously involved areas (should be same modality as initial diagnosis if possible) should be performed at the end of induction chemotherapy (commonly 4-6 weeks)

✓ For patients treated with cytotoxic chemotherapy, either CT of previously involved areas or PET/CT may be approved for treatment response as often as every 2 cycles of chemotherapy as decisions about chemotherapy drug selection and radiation treatment can be made based on either anatomic or metabolic responses.
 o If CT is performed for primary treatment response, PET/CT can be approved to clarify inconclusive findings detected on conventional imaging
 o If PET/CT is performed for primary treatment response, CT or MRI can be approved to clarify inconclusive findings detected on PET imaging

✓ Once a particular patient has a negative PET/CT, all subsequent treatment response evaluations should use CT imaging only, including end of therapy evaluation.
Anaplastic Large Cell Lymphoma Surveillance

✓ CT of the Neck (CPT®70491), Chest (CPT®71260), Abdomen/Pelvis (CPT®74177) and other previously involved or currently symptomatic areas should be approved for any patient with clinical symptoms suggesting recurrence.

✓ CT with contrast or MRI without and with contrast of all previously involved areas is indicated at 3, 6, 12, and 18 months after therapy is completed.

✓ Bone scan (See PEDONC-1.3) is indicated at 3, 6, 12, and 18 months after therapy is completed for patients with bony primary tumors or metastatic disease

✓ PET/CT is not indicated for surveillance, but can be approved to clarify inconclusive findings on conventional imaging to evaluate the need for biopsy to establish recurrence. These requests should be forwarded for Medical Director review.

References

NOTE: Some payors consider PET to be experimental for the treatment of neuroblastoma, and those coverage policies may supersede the recommendations for PET in this section.

Neuroblastoma is the most common extracranial solid tumor of childhood, and may be divided into very low, low, intermediate, and high risk disease based on International Neuroblastoma Risk Group (INRG) Staging System. The treatments for each disease group vary widely and have distinct imaging strategies.

90-95% of neuroblastomas secrete the catecholamine metabolites homovanillic acid (HVA) and vanillylmandelic acid (VMA) in the urine, and Urine HVA/VMA should be performed at every disease evaluation for patients with positive HVA or VMA at diagnosis.

✓ Esthesioneuroblastoma should be imaged according to guidelines in ONC-3~SQUAMOUS CELL CARCINOMAS OF THE HEAD AND NECK

Neuroblastoma Initial Staging
✓ CT with contrast of the Neck/Chest/Abdomen/Pelvis (CPT® 70491, CPT® 71260, and CPT® 74177) or MRI without and with contrast of the Neck/Chest/Abdomen/Pelvis (CPT® 70543, CPT® 71552, CPT® 74183, and CPT® 72197) for all patients.
✓ MRI without and with contrast is preferred for evaluation of paraspinal tumors where cord compression is a possibility
✓ Metabolic imaging in neuroblastoma:
 o Adrenal nuclear imaging (CPT® 78075) can be approved for evaluation of suspected adrenal neuroblastoma, ganglioneuroblastoma, or ganglioneuroma when CT or MRI is inconclusive
 o 123I-Metaiodobenzylguanidine (MIBG) scintigraphy is the preferred metabolic imaging for neuroblastoma and is positive in 90-95% of neuroblastomas.
 o Most MIBG imaging studies are SPECT/CT studies using CT for localization only. Separate diagnostic CT codes should not be approved for this purpose. See Preface-4.6 SPECT/CT Imaging.
 o Occasionally MIBG cannot be performed prior to initiation of therapy. In this circumstance MIBG should be completed within 3 weeks of therapy initiation as the reduction in MIBG avidity in response to chemotherapy is not immediate. Inability to complete MIBG before starting therapy is not an indication to approve PET imaging.
PET imaging is rarely indicated in neuroblastoma but can be approved in the following situations:

- Patients with MIBG-negativity documented at initial diagnosis. For these patients, MIBG should not be repeated and whole body PET (CPT® 78816) may be performed rather than MIBG for metabolic tumor assessment.
- Patients who are MIBG positive at diagnosis and then become MIBG negative in response to treatment should continue to use MIBG (See PEDONC-1.3) for metabolic imaging indications
 - PET may be approved at major decision points such as hematopoietic stem cell transplantation or surgery if MIBG and CT/MRI findings are inconclusive
- Patients currently receiving medications that may interfere with MIBG uptake that cannot safely be discontinued prior to imaging, including:
 - Tricyclic antidepressants (amitriptyline, imipramine, etc.)
 - Selective serotonin reuptake inhibitors (SSRI’s, sertraline, paroxetine, escitalopram, etc.)
 - Neuroleptics (risperidone, haloperidol, etc.)
 - Antihypertensive drugs (alpha or beta blockers, calcium channel blockers)
 - Decongestants (phenylephrine, ephedrine, pseudoephedrine)
 - Stimulants (methylphenidate, dextroamphetamine, etc.)
 - PET should only be approved for this indication when specific documentation of the medication interaction is included with the current PET imaging request. These requests will be forwarded for Medical Director review.

Brain metastases are rare in neuroblastoma, but if clinical signs/symptoms suggest brain involvement, MRI Brain without and with contrast (CPT® 70553) is preferred for evaluation.

- MRI Brain of asymptomatic patients with no history of brain metastases is not indicated for neuroblastoma.

Neuroblastoma Treatment Response Imaging (Risk Group Dependent)

Risk Grouping will not be known at the time of initial staging, but is critical for all imaging decisions after initial staging is complete. The treating oncologist should always know the patient’s risk grouping. It is not possible to establish the appropriate imaging plan for a neuroblastoma patient without knowing his/her risk group.

Very Low Risk and Low Risk Neuroblastomas not receiving chemotherapy

- All patients can have CT with contrast or MRI without and with contrast of the primary tumor site 6-8 weeks after diagnosis to determine if additional treatment is necessary.

All Intermediate Risk Neuroblastomas and Very Low Risk or Low Risk Neuroblastomas receiving chemotherapy
Patients generally receive 2-12 cycles of moderate-intensity chemotherapy depending on response to treatment.

Surgical resection may occur prior to or following chemotherapy depending on disease stage. Restaging prior to surgery is appropriate.

- Treatment response assessment can be approved as often as every 2 cycles of chemotherapy (~every 6 weeks and at the end of planned treatment) and includes:
 - CT, with contrast of the Chest/Abdomen/Pelvis (CPT®71260, and CPT®74177) or MRI, without and with contrast, (CPT®71552, CPT®74183, and CPT®72197) and other sites with prior measurable disease
 - Urine HVA/VMA (if positive at diagnosis)
 - Bone marrow aspiration/biopsy if positive at diagnosis

- MIBG scan (See PEDONC-1.3) can be approved every 4 cycles and at the end of planned treatment

High Risk Neuroblastomas

This group of patients receives highly aggressive therapy using sequential chemotherapy, surgery, stem cell rescue, radiotherapy, monoclonal antibody (mAb) therapy, and biologic therapy.

- Treatment response assessment can be approved as often as every 2 cycles of chemotherapy, mAb, or biologic therapy (~every 6 weeks) and includes:
 - CT, with contrast, of the Chest/Abdomen/Pelvis (CPT®71260, and CPT®74177) or MRI, without and with contrast, (CPT®71552, CPT®74183, and CPT®72197) and other sites with prior measurable disease
 - Urine HVA/VMA (if positive at diagnosis)
 - Bone marrow aspiration/biopsy if positive at diagnosis
 - MIBG scan (See **PEDONC-1.3**)
 - MIBG scan is also indicated following 131I-MIBG therapy

- Treatment response assessment is necessary at every change in modality (prior to surgery, HSCT, XRT, and mAb therapy)

- More frequent imaging can be approved around the time of surgery if needed for preoperative planning

Neuroblastoma Surveillance Imaging (Risk Group Dependent)

Very Low Risk and Low Risk Neuroblastomas

- Urine HVA/VMA (if positive at diagnosis) at 1, 2, 3, 6, 9, 12, 18, 24, 36, 48, and 60 months after surgery

- CT with contrast or MRI without and with contrast of the primary tumor site 3, 6, 9, 12, 18, 24, and 36 months after surgery. If negative at 36 months, no further advanced imaging is necessary.
Ultrasound may be sufficient to evaluate the primary tumor site for certain patients and may be approved if requested to replace CT or MRI.

✓ MIBG is not indicated for surveillance of low risk neuroblastoma, but can be used to clarify findings suspicious for disease recurrence

✓ CT Chest is not indicated in asymptomatic surveillance imaging of neuroblastoma patients with no prior history of thoracic disease

Intermediate Risk Neuroblastomas

 ✓ Urine HVA/VMA (if positive at diagnosis) every month until 12 months after completion of therapy, then at 14, 16, 18, 21, 24, 30, and 36 months after completion of therapy, then annually until 10 years after completion of therapy.

 ✓ CT with contrast or MRI without and with contrast of the primary tumor and known metastatic sites at 3, 6, 9, 12, 18, 24, and 36 months after completion of therapy. If negative at 36 months, no further advanced imaging is necessary.

 o Ultrasound may be sufficient to evaluate the primary tumor site for certain patients and may be approved if requested to replace CT or MR

 ✓ For all patients with **stage 4 or M disease** or patients with **stage 4S or MS disease AND positive MIBG at completion of therapy**, MIBG scan (See **PEDONC-1.3**) at 3, 6, 9, 12, 24, and 36 months after completion of therapy.

 o If negative at 36 months, no further MIBG imaging is necessary.

 o For **all other intermediate risk neuroblastoma patients**, MIBG (or PET, if MIBG-negative at initial diagnosis) during surveillance is not indicated.

 ✓ CT Chest is not indicated in asymptomatic surveillance imaging of neuroblastoma patients with no prior history of thoracic disease.

High Risk Neuroblastomas

 ✓ Urine HVA/VMA (if positive at diagnosis) at 3, 6, 9, 12, 18, 24, 30, 36, 42, 48, 54, and 60 months after completion of therapy, then annually until 10 years after completion of therapy.

 ✓ CT with contrast or MRI without and with contrast of the primary tumor site at 3, 6, 9, 12, 18, 24, 30, 36, 42, 48, 54, and 60 months, then annually until 10 years after completion of therapy. If negative at 10 years, no further advanced imaging is necessary.

 ✓ MIBG scan (See **PEDONC-1.3**) at 3, 6, 9, 12, 18, 24, 30, and 36 months after completion of therapy. If negative at 36 months, no further MIBG or PET imaging is necessary.

 o Early detection of recurrence with 123I-MIBG has been shown to improve post-relapse outcomes in high risk neuroblastoma
CT Chest is not indicated in asymptomatic surveillance imaging of neuroblastoma patients with no prior history of thoracic disease.

Staging and Risk Grouping - Neuroblastoma

Neuroblastoma has been traditionally staged according to the International Neuroblastoma Staging System (INSS) which uses age, histology, sites of disease, and MYCN status to determine appropriate therapy:

- **Stage 1**: Localized tumor with complete gross excision, with or without microscopic residual disease; representative ipsilateral lymph nodes negative for tumor microscopically (nodes attached to and removed with the primary tumor may be positive)
- **Stage 2A**: Localized tumor with incomplete gross resection; representative ipsilateral non-adherent lymph nodes negative for tumor microscopically
- **Stage 2B**: Localized tumor with or without complete gross excision, with ipsilateral non-adherent lymph nodes positive for tumor; enlarged contralateral lymph nodes must be negative microscopically
- **Stage 3**: Localized tumor with or without complete gross excision, with ipsilateral non-adherent lymph nodes positive for tumor; enlarged contralateral lymph nodes must be negative microscopically
 - The midline is defined as the vertebral column. Tumors originating on one side and crossing the midline must infiltrate to or beyond the opposite side of the vertebral column
- **Stage 4**: Any primary tumor with dissemination to distant lymph nodes, bone, bone marrow, liver, skin, and/or other organs (except as defined for Stage 4S)
- **Stage 4S**: Infants <1 year of age with localized primary tumor (as defined for Stage 1, 2A or 2B) with dissemination limited to skin, liver, and/or bone marrow with <10% involvement

INSS Neuroblastoma Risk Grouping

<table>
<thead>
<tr>
<th>Low Risk Neuroblastoma (overall survival 99%, includes the following)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ All stage 1 patients regardless of other factors</td>
</tr>
<tr>
<td>✓ Stage 2A/2B patients meeting all of the following:</td>
</tr>
<tr>
<td>• without MYCN amplification</td>
</tr>
<tr>
<td>• with ≥50% tumor resection</td>
</tr>
<tr>
<td>• no clinical symptoms</td>
</tr>
<tr>
<td>✓ Stage 4S patients meeting all of the following:</td>
</tr>
<tr>
<td>• without MYCN amplification</td>
</tr>
<tr>
<td>• with favorable INPC histology,</td>
</tr>
<tr>
<td>• tumor DNA index >1</td>
</tr>
<tr>
<td>• no clinical symptoms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate Risk Neuroblastoma (overall survival 96%, includes the following):</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Stage 2A/2B patients with any of the following:</td>
</tr>
<tr>
<td>• <50% tumor resection or</td>
</tr>
<tr>
<td>• with clinical symptoms</td>
</tr>
</tbody>
</table>
Stage 3 patients with any of the following:
- age <18 months with no high risk features
- age ≥18 months with favorable INPC histology

Stage 4 patients with any of the following:
- age <12 months with no high risk features
- age ≥12 and <18 months with favorable INPC histology AND tumor DNA index >1

Stage 4S patients with any of the following:
- without MYCN amplification
- with unfavorable INPC histology
- tumor DNA index=1
- clinical symptoms

High Risk Neuroblastoma (overall survival ~40%, includes the following)

- All patients age ≥18 months with stage 4 disease regardless of other factors
- All patients with stages 2-4 or 4S disease and MYCN amplification regardless of other factors
- All stage 3 patients age ≥18 months with unfavorable INPC histology
- All stage 4 patients age ≥12 months with unfavorable INPC histology or tumor DNA index=1

More recent treatment protocols are using the more recently validated International Neuroblastoma Risk Group (INRG) Staging System, which is primarily defined by the complexity of local tumor extension and the presence or absence of distant metastases:

- **L1**: Localized tumor not involving vital structures as defined by the list of image-defined risk factors and confined to one body compartment
 - Image-defined risk factors include a list of specific imaging findings defining patients less likely to be candidates for complete surgical resection
 - These risk factors involve the encasement of major blood vessels, airway, skull base, costovertebral junction, brachial plexus, spinal canal, or major organs or structures
- **L2**: Logoregional tumor with presence of one or more image-defined risk factors
- **M**: Distant metastatic disease (except stage MS)
- **MS**: Metastatic disease in children younger than 18 months with metastases confined to skin, liver, and/or bone marrow with <10% involvement (MIBG must be negative in bone and bone marrow)

INRG Neuroblastoma Risk Grouping

Very Low Risk Neuroblastoma (28% of patients, event-free survival >85%) includes:
- Stage L1 or L2 maturing ganglioneuroma or intermixed ganglioneuroblastoma
- Stage MS patients meeting all of the following:
 - age <18 months
 - without MYCN amplification
 - without 11q aberration

Low Risk Neuroblastoma (27% of patients, event-free survival >75 to ≤85%) includes:
- Stage L2 patients age <18 months meeting all of the following:
 - any histology except maturing ganglioneuroma or intermixed ganglioneuroblastoma
 - without MYCN amplification
 - without 11q aberration
- Stage L2 patients age ≥18 months meeting all of the following:
• differentiating neuroblastoma or nodular ganglioneuroblastoma
• without MYCN amplification
• without 11q aberration

✓ Stage M patients meeting all of the following:
 • Age <18 months
 • without MYCN amplification
 • with hyperdiploidy (tumor DNA index >1)

Intermediate Risk Neuroblastoma (9% of patients, event-free survival ≥50 to ≤75%) includes:

✓ Stage L2 patients age <18 months meeting all of the following:
 • any histology except maturing ganglioneuroma or intermixed ganglioneuroblastoma
 • with 11q aberration

✓ Stage L2 patients age ≥18 months meeting all of the following:
 • neuroblastoma or nodular ganglioneuroblastoma
 • without MYCN amplification
 • with 11q aberration

✓ Stage M patients meeting all of the following:
 • age <18 months
 • without MYCN amplification
 • with diploidy (tumor DNA index = 1)

High Risk Neuroblastoma (36% of patients, event-free survival <50%, includes the following)

✓ All patients age ≥18 months with stage M disease regardless of other factors
✓ All patients with neuroblastoma and MYCN amplification regardless of other factors
✓ All stage MS patients with 11q aberration regardless of other factors

References – Neuroblastoma

Pedonc-7~Pediatric Renal Tumors

<table>
<thead>
<tr>
<th>Pedonc 7</th>
<th>Pediatric Renal Tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 – Pediatric Renal Tumors General Considerations</td>
<td>81</td>
</tr>
<tr>
<td>7.2 – Unilateral Wilms Tumor (UWT)</td>
<td>81</td>
</tr>
<tr>
<td>7.3 – Bilateral Wilms Tumor (BWT)</td>
<td>83</td>
</tr>
<tr>
<td>7.4 – Pediatric Renal Cell Carcinoma (RCC)</td>
<td>85</td>
</tr>
<tr>
<td>7.5 – Clear Cell Sarcoma of the Kidney (CCSK)</td>
<td>87</td>
</tr>
<tr>
<td>7.6 – Malignant Rhabdoid Tumor of the Kidney (MRT) and Other Extracranial Sites</td>
<td>88</td>
</tr>
</tbody>
</table>
PEDONC-7.1 Pediatric Renal Tumors General Considerations

NOTE: Some payors consider PET imaging to be experimental for the treatment of Wilms tumor and other kidney tumors, and those coverage policies may supersede the recommendations for PET imaging in this section.

A variety of tumors can occur in the pediatric kidney, and include the following:

- Wilms Tumor
 - Favorable Histology (FHWT)
 - Focal Anaplasia (FAWT)
 - Diffuse Anaplasia (DAWT)
 - Bilateral Wilms Tumor (BWT)
- Renal Cell Carcinoma (RCC)
- Clear Cell Sarcoma of the Kidney (CCSK)
- Malignant Rhabdoid Tumor of the Kidney (MRT)
- Other Cancers occurring in the Kidney:
 - Neuroblastoma
 - Primitive Neuroectodermal Tumor
 - Rhabdomyosarcoma
 - Non-Rhabdomyosarcoma Soft Tissue Sarcomas
 - These and other rare tumors have been reported occurring primarily in the kidney and should be imaged according to the guidelines for the specific histologic diagnosis.

PEDONC-7.2 Unilateral Wilms Tumor (UWT)

Unilateral Wilms Tumor Initial Staging

Many patients will present with an asymptomatic abdominal mass, and will undergo ultrasound as a primary evaluation. Doppler ultrasound to evaluate for tumor thrombus is no longer necessary unless CT findings are inconclusive, and should not be performed if CT is already completed.

- CT Abdomen/Pelvis with contrast (CPT®74177) is indicated for all unilateral Wilms tumor patients
 - If bilateral renal lesions are noted on ultrasound or CT, MRI Abdomen (CPT®74183) and Pelvis (CPT®72197) without and with contrast and should be strongly considered for better characterization

- CT Chest with (CPT® 71260) or without contrast (CPT® 71250) should be completed prior to anesthesia exposure if possible
MRI Brain without and with contrast (CPT®70553) is indicated for initial staging for any patient with neurologic signs or symptoms raising suspicion of CNS metastases

Bone scan (See PEDONC-1.3) is indicated for any patient with signs or symptoms raising suspicion of bony metastases

PET is not indicated in the initial staging of any pediatric renal tumor

Unilateral Wilms Tumor Treatment Response

A very low risk subset of stage I FHWT will be observed after nephrectomy, and enter directly into surveillance.

The majority of patients will receive chemotherapy with or without XRT, beginning within 14 days of initial surgery.

CT Chest with (CPT® 71260) or without contrast (CPT® 71250) can be performed every 2 cycles during treatment and at the end of planned therapy

CT Abdomen/Pelvis with contrast (CPT®74177) or MRI Abdomen (CPT®74183) and Pelvis (CPT®72197) without and with contrast can be performed every 2 cycles during treatment and at the end of planned therapy

PET is not routinely utilized to assess treatment response in Wilms tumor.

However, since most Wilms tumors are FDG-avid, rare circumstances may occur where PET imaging should be approved to establish the presence of active disease only when a major therapeutic decision depends on PET avidity. These requests will be forwarded for Medical Director review.

Unilateral Wilms Tumor Surveillance Imaging

There are no data to support the use of PET imaging for routine surveillance in any patient with Wilms tumor.

Very low risk FHWT treated with nephrectomy only:

CT Chest with (CPT® 71260) or without contrast (CPT® 71250) at 3, 6, 12, and 18 months after nephrectomy

CT Abdomen and Pelvis with contrast (CPT®74177) at 3, 6, 12, and 18 months after nephrectomy

Surveillance pelvic imaging is indicated in this patient group due to higher risk of recurrence in surgery only treatment

Other surveillance imaging should be by Abdominal US (CPT®76700) and CXR

FHWT treated with chemotherapy with or without XRT:

CT Chest with (CPT® 71260) or without contrast (CPT® 71250) every 6 months for 3 years after completion of all therapy

CT Abdomen with contrast (CPT®74160) or MRI Abdomen without and with contrast (CPT®74183) every 6 months for 3 years after completion of all therapy

Pelvic imaging is not indicated for surveillance unless prior pelvic involvement has been documented or there was tumor rupture at diagnosis
Other surveillance imaging should be by Abdominal US and CXR

FAWT or DAWT treated with chemotherapy with or without XRT:

- CT Chest with (CPT® 71260) or without contrast (CPT® 71250) every 3 months for 2 years after completion of all therapy
- CT Abdomen and Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) every 3 months for 2 years after completion of all therapy
- Other surveillance imaging should be by Abdominal US and CXR

Surveillance imaging with CT of the Chest/Abdomen/Pelvis (CPT®71260 and CPT®74177) following successful treatment for recurrent unilateral Wilms tumor can be approved at every 3 months for 1 year after completing therapy for recurrence.

Surveillance imaging later than 12 months after completing therapy for recurrence should follow the standard timing listed in this surveillance section.

PEDONC-7.3 Bilateral Wilms Tumor (BWT)

Bilateral Wilms Tumor Initial Staging

Many patients will present with an asymptomatic abdominal mass, and will undergo ultrasound as a primary evaluation. Doppler ultrasound to evaluate for tumor thrombus is no longer necessary unless CT findings are inconclusive, and should not be performed if CT is already completed.

Patients with bilateral Wilms Tumor may begin therapy without a histologic diagnosis to preserve a localized disease stage and attempt to shrink the tumors to allow for renal-sparing surgical approaches.

- MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) is the preferred imaging modality for patients with bilateral Wilms tumor
 - CT Abdomen and Pelvis with contrast (CPT®74177) is often performed prior to discovery of bilateral lesions and should not prevent MRI from being approved
 - CT Abdomen and Pelvis with contrast (CPT®74177) may be used for patients with a contraindication to MRI
 - Avoidance of anesthesia exposure is not a contraindication to MRI for these patients

- CT Chest with (CPT® 71260) or without contrast (CPT® 71250) is indicated in the initial workup of all pediatric renal tumors and should be completed prior to anesthesia exposure if possible

- MRI Brain without and with contrast (CPT®70553) is indicated for initial staging for any patient with neurologic signs or symptoms raising suspicion of CNS metastases
✓ Bone scan (See PEDONC-1.3) is indicated for any patient with signs or symptoms raising suspicion of bony metastases

✓ PET is not indicated in the initial staging of any pediatric renal tumor

Bilateral Wilms Tumor Treatment Response

✓ MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) can be performed every 2 cycles during treatment and at the end of planned therapy
 o CT Abdomen and Pelvis with contrast (CPT®74177) may be used for patients with a contraindication to MRI
 o If treating with chemotherapy without a biopsy, disease evaluation is indicated at week 6. If either tumor has not shrunk 50%, then open biopsy is indicated to confirm favorable histology.
 o If partial nephrectomy still not feasible at week 6, the next disease evaluation is at week 12. Surgical resection of each kidney’s tumor(s) should occur no later than week 12.

✓ CT Chest with (CPT® 71260) or without contrast (CPT® 71250) can be performed every 2 cycles during treatment and at the end of planned therapy

✓ PET is not routinely utilized to assess treatment response in Wilms tumor.
 o However, since most Wilms tumors are FDG-avid, rare circumstances may occur where PET should be approved to establish the presence of active disease only when a major therapeutic decision depends on PET avidity. These requests will be forwarded for Medical Director review.

Bilateral Wilms Tumor Surveillance Imaging

✓ CT Chest with (CPT® 71260) or without contrast (CPT® 71250) every 6 months for 3 years after completion of all therapy

✓ CT Abdomen with contrast (CPT®74160) or MRI Abdomen without and with contrast (CPT®74183 and CPT®72197) every 6 months for 3 years after completion of all therapy
 o “Extra” one-time imaging is supported at 3 months after completion of all therapy because close surgical margins occur frequently in patients undergoing nephron-sparing surgical approaches, and risk for early local recurrence is higher in this patient group

✓ Pelvic imaging is not indicated for surveillance unless prior pelvic involvement has been documented or there was tumor rupture at diagnosis

✓ Other surveillance imaging should be by abdominal US (CPT®76700) and CXR
 o When CT or MRI Abdomen no longer indicated, patients with bilateral Wilms Tumor should have screening Abdominal ultrasound every 3 months until age 8
Surveillance imaging with CT of the Chest/Abdomen/Pelvis (CPT®71260 and CPT®74177) following successful treatment for recurrent bilateral Wilms tumor can be approved every 3 months for 1 year after completing therapy for recurrence.

- Surveillance imaging later than 12 months after completing therapy for recurrence should follow the standard timing listed in this surveillance section.

PEDONC-7.4 Pediatric Renal Cell Carcinoma (RCC)

A majority of pediatric cases have a novel subtype involving TFE3 or TFEB translocations, which have a different natural history than “adult type” RCC. Patients of any age with TFE3 or TFEB translocated RCC should be imaged according to this guideline section.

40-45% of pediatric RCC cases have similar histologies to adult RCC (clear cell, papillary, chromophobe, etc.) and imaging decisions will be similar to adult oncology guidelines. Patients with all other subtypes of RCC should be imaged according to **ONC-17~RENAL CELL CANCER (RCC)**.

Renal Cell Carcinoma Initial Staging

Many patients will present with an asymptomatic abdominal mass, and will undergo ultrasound as a primary evaluation. Doppler ultrasound to evaluate for tumor thrombus is no longer necessary unless CT findings are inconclusive, and should not be performed if CT is already completed.

- CT Abdomen and Pelvis with contrast (CPT®74177) is indicated in all patients
 - If bilateral renal lesions are noted on ultrasound or CT, MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) should be strongly considered

- CT Chest with (CPT® 71260) or without contrast (CPT® 71250) should be completed prior to anesthesia exposure if possible

- Other staging imaging should be deferred until a histologic diagnosis is made, by complete nephrectomy for most unilateral renal tumors and biopsy for bilateral renal tumors or inoperable unilateral tumors

- MRI Brain without and with contrast (CPT® 70553) is indicated for any patient with neurologic signs or symptoms raising suspicion of CNS metastases

- Bone scan (See **PEDONC-1.3**) is indicated for any patient with signs or symptoms raising suspicion of bony metastases

- PET scan is not indicated in the initial staging of any pediatric renal tumor

Renal Cell Carcinoma Treatment Response

Most patients will have surgical resection of all disease at the time of diagnosis and will enter directly into surveillance.
Patients with residual measurable disease after initial surgery and receiving adjuvant medical therapy can have CT Chest with (CPT® 71260) or without contrast (CPT® 71250) and CT Abdomen with contrast (CPT®74160) every 3 months during active treatment.

Pelvic imaging is not indicated unless prior pelvic involvement has been documented.

PET is not routinely utilized to assess treatment response in Pediatric RCC. However, since some RCC tumors are FDG-avid, rare circumstances may occur where PET should be approved to establish the presence of active disease only when a major therapeutic decision depends on PET avidity. These requests will be forwarded for Medical Director review.

Renal Cell Carcinoma Surveillance Imaging

- **All Pediatric RCC patients:**
 - MRI Brain without and with contrast (CPT®70553) every 6 months for 2 years after completion of all therapy only for patients with documented CNS metastases or new signs/symptoms suggestive of CNS recurrence.

- **TFE3 or TFEB subtype:**
 - CT Chest with (CPT® 71260) or without contrast (CPT® 71250) every 3 months for 2 years after completion of all therapy
 - CT Abdomen with contrast (CPT®74160) or MRI Abdomen without and with contrast (CPT®74183) every 3 months for 2 years after completion of all therapy
 - Pelvic imaging is not indicated for surveillance unless prior pelvic involvement has been documented

- **All other histologies:**
 - Surveillance imaging is appropriate as listed in the adult Oncology Imaging Guidelines: [ONC-17.4 Renal Cell Cancer Surveillance](#)
PEDONC-7.5 Clear Cell Sarcoma of the Kidney (CCSK)

Be careful not to confuse the diagnosis with clear cell RCC. See ONC-17~RENAL CELL CANCER (RCC) for imaging guidelines.

Clear Cell Sarcoma of the Kidney Initial Staging

Many patients will present with an asymptomatic abdominal mass, and will undergo ultrasound as a primary evaluation. Doppler ultrasound to evaluate for tumor thrombus is no longer necessary unless CT findings are inconclusive, and should not be performed if CT is already completed.

- CT Abdomen and Pelvis with contrast (CPT®74177) is indicated in all patients
 - If bilateral renal lesions are noted on ultrasound or CT, MRI Abdomen and Pelvis without and with contrast should be strongly considered
- CT Chest with (CPT® 71260) or without contrast (CPT® 71250) should be completed prior to anesthesia exposure if possible
- Other staging imaging should be deferred until a histologic diagnosis is made, by complete nephrectomy for most unilateral renal tumors and biopsy for bilateral renal tumors or inoperable unilateral tumors
- MRI Brain without and with contrast (CPT®70553) is indicated for initial staging in all patients with clear cell sarcoma of the kidney
- Bone scan (See PEDONC-1.3) is indicated in all patients with clear cell sarcoma of the kidney
- PET is not indicated in the initial staging of any pediatric renal tumor

Clear Cell Sarcoma of the Kidney Treatment Response

- CT Chest with (CPT® 71260) or without contrast (CPT® 71250) can be performed every 2 cycles during treatment and at the end of planned therapy
- CT Abdomen and Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) can be performed every 6 weeks during treatment and at the end of planned therapy
- MRI Brain without and with contrast (CPT®70553) can be performed:
 - Every 2 cycles during treatment for patients with CNS metastases at initial staging
 - At the end of planned therapy for all patients with CCSK
- Bone scan (See PEDONC-1.3) at the end of planned therapy
- PET is not routinely utilized to assess treatment response in CCSK
 - However, since clear cell sarcomas have been shown to be FDG-avid in other anatomic locations, rare circumstances may occur where PET should be approved to establish the presence of active disease only when a major therapeutic decision
depends on PET avidity. These requests will be forwarded for Medical Director review.

Clear Cell Sarcoma of the Kidney Surveillance Imaging

- CT Chest with (CPT® 71260) or without contrast (CPT® 71250) every 3 months for 2 years after completion of all therapy
- CT Abdomen and Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) every 3 months for 2 years after completion of all therapy
- MRI Brain without and with contrast (CPT®70553) every 6 months for 3 years after completion of all therapy
- Bone scan (See **PEDONC-1.3**) every 3 months for 1 year, then every 6 months for 1 year after completion of all therapy
 - If negative at 36 months, no further advanced imaging is necessary.
- Other surveillance imaging should be by Abdominal US (CPT®76700) and CXR

PEDONC-7.6 Malignant Rhabdoid Tumor of the Kidney (MRT) and Other Extracranial Sites

Be careful not to confuse the diagnosis with rhabdomyosarcoma. See **PEDONC-8.2 Rhabdomyosarcoma (RMS)** for imaging guidelines.

A highly aggressive histologic variant that can also occur in other locations and all non-CNS sites should follow these guidelines.

Primary CNS rhabdoid malignancies should be imaged according to **PEDONC-4.5 Atypical Teratoid/Rhabdoid Tumors (ATRT).**

Malignant Rhabdoid Tumor Initial Staging

Many patients will present with an asymptomatic abdominal mass, and will undergo ultrasound as a primary evaluation. Doppler ultrasound to evaluate for tumor thrombus is no longer necessary unless CT findings are inconclusive, and should not be performed if CT is already completed.

- CT Abdomen and Pelvis with contrast (CPT®74177) is indicated in all patients
 - If bilateral renal lesions are noted on ultrasound or CT, MRI Abdomen and Pelvis without and with contrast should be strongly considered
- CT Chest with (CPT® 71260) or without contrast (CPT® 71250) should be completed prior to anesthesia exposure if possible
Other staging imaging should be deferred until a histologic diagnosis is made, by complete nephrectomy for most unilateral renal tumors and biopsy for bilateral renal tumors or inoperable unilateral tumors

MRI Brain without and with contrast (CPT®70553) is indicated for all patients with MRT of the kidney or other non-CNS site

Bone scan (See PEDONC-1.3) is indicated in all patients with MRT of the kidney or other non-CNS site

PET is not indicated in the initial staging of any pediatric renal tumor

Malignant Rhabdoid Tumor Treatment Response:

CT Chest with (CPT® 71260) or without contrast (CPT® 71250) can be performed every 2 cycles during treatment and at the end of planned therapy

CT Abdomen and Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and 72197) can be performed every 2 cycles during treatment and at the end of planned therapy
 - If primary site other than kidney, perform CT with contrast or MRI without and with contrast of primary site in place of abdominal and pelvic imaging

MRI Brain without and with contrast (CPT®70553) can be performed:
 - Every 2 cycles during treatment for patients with CNS metastases at initial staging
 - At the end of planned therapy for all patients with MRT

Bone scan (See PEDONC-1.3) at the end of planned therapy only if positive at initial diagnosis

PET is not routinely utilized to assess treatment response in MRT.
 - However, since malignant rhabdoid tumors have been shown to be FDG-avid, rare circumstances may occur where PET should be approved to establish the presence of active disease only when a major therapeutic decision depends on PET avidity. These requests will be forwarded for Medical Director review.

Malignant Rhabdoid Tumor Surveillance Imaging

CT Chest with (CPT® 71260) or without contrast (CPT® 71250) every 3 months for 2 years after completion of all therapy

CT Abdomen and Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) every 3 months for 3 years after completion of all therapy
 - If primary site other than kidney, perform CT with contrast or MRI without and with contrast of primary site in place of abdominal imaging

MRI Brain without and with contrast (CPT®70553) very 3 months for 1 year, then every 6 months for 1 year after completion of all therapy
✓ Bone scan (See PEDONC-1.3) very 3 months for 1 year, then every 6 months for 1 year after completion of all therapy only if positive at initial diagnosis
 ○ If negative at 36 months, no further advanced imaging is necessary

✓ Other surveillance imaging should be by Abdominal US (CPT®76700) and CXR

References – Renal Tumors

<table>
<thead>
<tr>
<th>PEDONC 8</th>
<th>PEDIATRIC SOFT TISSUE SARCOMAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 – GENERAL REMARKS</td>
<td>.. 92</td>
</tr>
<tr>
<td>8.2 – RHABDOMYOSARCOMA (RMS)</td>
<td>.. 92</td>
</tr>
<tr>
<td>8.3 – NON-RHABDOMYOSARCOMA SOFT TISSUE SARCOMAS (NRSTS)</td>
<td>95</td>
</tr>
</tbody>
</table>
PEDONC-8.1 General Remarks
Soft tissue sarcomas occur in both adult and pediatric patients, but some are more common in one age group than the other. Unless specified below, patients age <18 years old should be imaged according to this guideline section. Exceptions include:

- Rhabdomyosarcoma patients of all ages should be imaged according to guidelines in PEDONC-8.2 Rhabdomyosarcoma
- Kaposi’s sarcoma patients of all ages should be imaged according to guidelines in ONC-31.10 Kaposi’s Sarcoma

NOTE: Some payors consider PET to be experimental for the treatment of rhabdomyosarcoma and other soft tissue sarcomas, and those coverage policies may supersede the recommendations for PET in this section.

Pediatric soft tissue sarcomas are divided into two groups:
1. Rhabdomyosarcoma (RMS) accounts for ~60% of soft tissue sarcomas in young patients, but only ~25% of soft tissue sarcomas in adolescents
2. Nonrhabdomyosarcoma soft tissue sarcomas (NRSTS) which encompasses all other histologic subtypes

Evaluation of soft tissue masses of uncertain nature prior to biopsy should follow general imaging guidelines in PEDMS-7~Mass.

PEDONC-8.2 Rhabdomyosarcoma (RMS)
Rhabdomyosarcoma Initial Staging

- Because RMS can arise from any muscle tissue, the presenting symptoms and primary tumor sites vary widely and strongly influence the appropriate imaging decisions
 - Either CT with contrast or MRI without and with contrast is acceptable for primary site imaging of RMS arising in the abdomen or pelvis at the discretion of the treating oncologist.
 - CT with contrast is the preferred primary site imaging modality for RMS arising in the thoracic cavity (not the chest wall).
 - MRI without and with contrast is the preferred primary site imaging modality for RMS occurring in all other anatomic locations, including the chest wall.

- In addition, evaluation for lung metastases using CT Chest with (CPT® 71260) or without contrast (CPT® 71250) is indicated in the initial workup of all pediatric soft tissue sarcomas and should be completed prior to anesthesia exposure if possible

- Other staging imaging should be deferred until a histologic diagnosis is made
PET/CT is superior to conventional imaging for detection of nodal and bony metastases in pediatric RMS and is indicated in the initial staging of all patients after histologic diagnosis is established
- Whole body PET/CT (CPT® 78816) is the preferred study for initial staging of RMS
- Bone scan (See PEDONC-1.3) may be substituted for PET imaging if PET not available

CT Abdomen and Pelvis with contrast (CPT® 74177) is not routinely indicated in the initial metastatic staging of pediatric RMS, but can be approved in the following situations:
- Evaluation of inconclusive PET findings
- Primary site of abdomen or pelvis
- Lower extremity primary sites

MRI Brain (CPT® 70553) and Spine without and with contrast (Cervical-CPT® 72156, Thoracic-CPT® 72157, Lumbar-CPT® 72158) is indicated for initial staging in the following pediatric RMS:
- Primary site of paraspinal or paravertebral region
- PET- or bone scan-avid lesions in skull, neck, vertebrae
- Any patient with neurologic signs or symptoms raising suspicion of CNS metastases

Rhabdomyosarcoma Treatment Response

- **CT Chest with (CPT® 71260) or without contrast (CPT® 71250) can be performed every 6 weeks during treatment and at the end of planned therapy**

- **Primary site imaging:**
 - CT with contrast or MRI without and with contrast can be performed every 6 weeks during treatment and at the end of planned therapy
 - Restaging imaging is appropriate after local control surgery (complete or partial resection) is completed

- **Metastatic site imaging:**
 - Repeat imaging of all known metastatic sites using the same modality as during initial staging is appropriate whenever primary site imaging is necessary

- **PET is not routinely utilized to assess treatment response in RMS, but is indicated in the following circumstances:**
 - Response assessment prior to local control surgery or radiation therapy
 - Evaluation of residual mass visible on conventional imaging as part of end of therapy evaluation
 - Response assessment of disease visible on PET but not conventional imaging
 - Once PET has been documented to be negative for a given patient’s cancer or all PET-avid disease has been surgically resected, PET should not be used for continued disease monitoring or surveillance unless one of the exceptions in
section PEDONC-1~General Guidelines applies. These requests will be forwarded for Medical Director review.

- PET is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.

Rhabdomyosarcoma Surveillance Imaging:

- **Primary site imaging:**
 - CT with contrast or MRI without and with contrast every 3 months for 1 year, then every 4 months for 2 years, then every 6 months for 1 year after completion of all therapy

- **Metastatic site imaging:**
 - All patients: CT Chest with (CPT® 71260) or without contrast (CPT® 71250) every 3 months for 1 year, then every 4 months for 2 years after completion of all therapy
 - Patients with metastatic RMS: CT Chest (with OR without contrast, as requested) and all known metastatic sites every 3 months for 1 year, then every 4 months for 2 years, then every 6 months for 1 year after completion of all therapy
 - Nuclear bone scan (See PEDONC-1.3) should be used for surveillance of known bony metastases every 3 months for 1 year, then every 4 months for 2 years, then every 6 months for 1 year after completion of all therapy

- PET should not be used for surveillance imaging of RMS unless one of the following applies:
 - Conventional imaging (CT, MRI, US, plain film) reveals findings that are inconclusive or suspicious for recurrence and PET avidity will determine whether biopsy or continued observation is appropriate
 - Residual mass that has not changed in size since the last conventional imaging does not justify PET imaging
 - PET avidity in a residual mass at the end of planned therapy is not an indication for PET imaging during surveillance.
 - Rare circumstances where obvious clinical symptoms show strong evidence suggesting recurrence and PET would replace conventional imaging modalities
 - These requests will be forwarded for Medical Director review.
PEDONC-8.3 Non-Rhabdomyosarcoma Soft Tissue Sarcomas (NRSTS)

All soft tissue sarcomas other than RMS fall into this category.

NRSTS Initial Staging

✓ Because soft tissue sarcomas can arise from any soft tissue, the presenting symptoms and primary tumor sites vary widely and strongly influence the appropriate imaging decisions.
 o Either CT with contrast or MRI without and with contrast is acceptable for primary site imaging of NRSTS arising in the abdomen or pelvis at the discretion of the treating oncologist.
 o CT with contrast is the preferred primary site imaging modality for NRSTS arising in the thoracic cavity (not the chest wall).
 o MRI without and with contrast is the preferred primary site imaging modality for NRSTS occurring in all other anatomic locations, including the chest wall.

✓ In addition, evaluation for lung metastases using CT Chest with (CPT® 71260) or without contrast (CPT® 71250) is indicated in the initial workup of all pediatric soft tissue sarcomas and should be completed prior to anesthesia exposure if possible

✓ Other staging imaging should be deferred until a histologic diagnosis is made:
 o PET/CT (CPT® 78815) may be considered in the following:
 • Desmoplastic small round cell tumor
 • Prior to neoadjuvant chemotherapy
 • Evaluating inconclusive findings found on conventional imaging
 • Whole body PET/CT (CPT® 78816) may be approved if there is clinical suspicion of skull or distal lower extremity involvement
 o Nuclear bone scan (See PEDONC-1.3) is used to evaluate for bony metastases but should be omitted if PET is performed
 o CT Abdomen and Pelvis with contrast (CPT® 74177) is not routinely indicated in the initial metastatic staging of pediatric NRSTS, but can be approved in the following situations:
 • Evaluation of inconclusive PET findings
 • Primary site of abdomen or pelvis
 • Lower extremity primary sites
 • Desmoplastic small round cell tumor
 o MRI Brain (CPT® 70553) and Spine (Cervical-CPT® 72156, Thoracic-CPT® 72157, Lumbar-CPT® 72158) without and with contrast is indicated for initial staging in the following pediatric NRSTS:
 • Primary site of paraspinal or paravertebral region
 • PET- or nuclear bone scan-avid lesions in skull, neck, vertebrae
 • Any patient with neurologic signs or symptoms raising suspicion of CNS metastases
NRSTS Treatment Response

Many patients with NRSTS will be treated with surgical resection alone, and these patients enter immediately into surveillance

✔ CT Chest with (CPT® 71260) or without contrast (CPT® 71250) can be performed every 6 weeks during treatment and at the end of planned therapy

✔ Primary site imaging:
 o CT with contrast or MRI without and with contrast can be performed every 6 weeks during treatment and at the end of planned therapy
 o Restaging imaging is appropriate after local control surgery (complete or partial resection) is completed

✔ Metastatic site imaging:
 o Repeat imaging of all known metastatic sites using the same modality as during initial staging is appropriate whenever primary site imaging is necessary

✔ PET imaging is not routinely utilized to assess treatment response in NRSTS, but is indicated in the following circumstances if positive at initial diagnosis.
 o Response assessment prior to local control surgery or radiation therapy
 o Evaluation of residual mass visible on conventional imaging as part of end of therapy evaluation
 o Response assessment of disease visible on PET but not conventional imaging
 o Once PET has been documented to be negative for a given patient’s cancer or all PET-avid disease has been surgically resected, PET should not be used for continued disease monitoring or surveillance unless one of the exceptions in section PEDONC-1~General Guidelines applies. These requests will be forwarded for Medical Director review.
 o PET imaging is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET imaging may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.

Surveillance Imaging:

✔ Primary site imaging:
 o CT with contrast or MRI without and with contrast every 6 months for 5 years after completion of all therapy

✔ Metastatic site imaging:
 o All patients: CT Chest with (CPT® 71260) or without contrast (CPT® 71250) and all known metastatic sites every 6 months for 5 years after completion of all therapy
 o Nuclear bone scan (See PEDONC-1.3) should be used for surveillance of known bony metastases every 6 months for 5 years after completion of all therapy
Surveillance after recurrence:
 - Surveillance imaging using CT Chest (CPT®71260) and CT with contrast or MRI without and with contrast of the primary site following successful treatment for recurrent NRSTS can be approved every 3 months for 1 year after completing therapy for recurrence.
 - Surveillance imaging later than 12 months after completing therapy for recurrence should follow the standard timing listed in this surveillance section.

PET should not be used for surveillance imaging of NRSTS unless one of the following applies:
 - Conventional imaging (CT, MRI, US, plain film) reveals findings that are inconclusive or suspicious for recurrence and PET avidity will determine whether biopsy or continued observation is appropriate
 - Residual mass that has not changed in size since the last conventional imaging does not justify PET
 - PET avidity in a residual mass at the end of planned therapy is not an indication for PET imaging during surveillance.
 - Rare circumstances where obvious clinical symptoms show strong evidence suggesting recurrence and PET would replace conventional imaging modalities
 - These requests will be forwarded for Medical Director review.

References - Soft Tissue Sarcomas

PEDONC 9 ~ BONE TUMORS

<table>
<thead>
<tr>
<th>PEDONC 9</th>
<th>BONE TUMORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 – GENERAL REMARKS</td>
<td></td>
</tr>
<tr>
<td>9.2 – BENIGN BONE TUMORS</td>
<td></td>
</tr>
<tr>
<td>9.3 – OSTEOGENIC SARCOMA (OS)</td>
<td></td>
</tr>
<tr>
<td>9.4 – EWING SARCOMA AND PRIMITIVE NEUROECTODERMAL TUMORS (ESFT)</td>
<td></td>
</tr>
</tbody>
</table>
PEDONC-9~BONE TUMORS

PEDONC-9.1 General Remarks

These guidelines include both benign and malignant lesions.

Bone tumors occur in both adult and pediatric patients, but some are more common in one age group than the other. Unless specified below, patients age <18 years old should be imaged according to this guideline section. Exceptions include:

- Osteogenic sarcoma patients of all ages should be imaged according to guidelines in PEDONC-9.3 Osteogenic Sarcoma (OS)
- Ewing sarcoma and Primitive Neuroectodermal Tumor patients of all ages should be imaged according to guidelines in PEDONC-9.4 Ewing Sarcoma and Primitive Neuroectodermal Tumors (ESFT).
- Chondrosarcoma patients of all ages should be imaged according to guidelines in ONC-12.4 Bone Sarcomas
- Chordoma patients of all ages should be imaged according to guidelines in ONC-12.4 Bone Sarcomas
- Giant cell tumor of bone and enchondroma patients of all ages should be imaged according to guidelines in ONC-12.5 Benign Bone Tumors
- Other benign bone tumor patients of all ages should be imaged according to guidelines in PEDONC-9.2 Benign Bone Tumors

All bone tumors should be evaluated by plain X-ray prior to any advanced imaging.

PET does not reliably distinguish between benign and malignant bone tumors and should not be performed prior to biopsy.

PEDONC-9.2 Benign Bone Tumors

- **Osteochondroma**
 - Plain X-ray appearance is diagnostic for the majority of patients and advanced imaging is generally unnecessary
 - MRI without and with contrast can be approved after evaluation by the operating surgeon for preoperative planning
 - MRI without contrast OR without and with contrast, as requested, is appropriate for patients with osteochondroma when there is clinical concern for malignant transformation based on new or worsening pain symptoms or a change on a recent plain X-ray

- **Osteoid osteoma**
 - CT without contrast is often the primary study when osteoid osteoma is suspected based on clinical history and plain film findings
 - Bone scan SPECT (CPT® 78320) is indicated for suspected osteoid osteoma
Some patients will require both CT without contrast as well as MRI without and with contrast to make a definitive diagnosis.

Other benign tumors
- Variety of diagnoses, including osteoid osteoma, osteoblastoma, aneurysmal bone cysts, fibrous dysplasia, chondroblastoma and others,
- Plain X-ray appearance is diagnostic for many benign bone tumors and advanced imaging is generally unnecessary except for preoperative planning
- MRI without and with contrast is the primary modality for advanced imaging of bone tumors, and can be approved to help narrow differential diagnoses and determine whether biopsy is indicated
 - For certain tumors, CT (contrast as requested) provides better visualization of specific bony details, and requests after evaluation by the operating surgeon for preoperative planning should generally be approved

Surveillance imaging, when indicated, should utilize plain X-ray
- Some benign bone tumor types carry a risk of malignant degeneration over time, but routine advanced imaging surveillance has not been shown to improve outcomes for these patients
- MRI without and with contrast can be approved to evaluate new findings on plain X-ray or new/worsening clinical symptoms not explained by a recent plain X-ray

There are no data to support the use of PET in the evaluation of benign bone tumors, and PET requests should not be approved without biopsy confirmation of a malignancy.

PEDONC-9.3 Osteogenic Sarcoma (OS)

Osteogenic Sarcoma Initial Staging

All bone tumors should be evaluated by plain X-ray prior to any advanced imaging

MRI without and with contrast is the preferred primary site imaging
- CT, contrast as requested, can be approved if there is a contraindication to MRI or if requested after evaluation by the operating surgeon to clarify inconclusive MRI findings for preoperative planning
- MRA and/or CTA may rarely be indicated for complicated surgical resections, and can be approved after evaluation by the operating surgeon to clarify inconclusive MRI findings for preoperative planning
- Requests for CT, MRA, or CTA should be forwarded for medical director review

CT Chest with (CPT® 71260) or without contrast (CPT® 71250) is superior to PET/CT for the detection of pulmonary mets, and is indicated in the initial workup of all suspected malignant bone tumors and should be completed prior to anesthesia exposure if possible
Other staging imaging should be deferred until a histologic diagnosis is made, initially by biopsy, as definitive resection is usually performed after neoadjuvant chemotherapy

- Distant bony metastases are rare in OS, but cause a significant change in treatment approach.
- Whole body PET/CT (CPT® 78816) is the preferred study for initial staging of OS after histologic diagnosis is established
 - PET has superior sensitivity to bone scan (95% vs. 76%) but equivalent overall diagnostic accuracy (98% vs. 96%) for detection of bony metastases in pediatric OS
 - Nuclear bone scan (See PEDONC-1.3) may be substituted for PET imaging if PET not available
 - If PET/CT is negative at initial diagnosis, bone scan (See PEDONC-1.3) is preferred for asymptomatic surveillance for bony metastases at time points after local control surgery
- CT Abdomen and Pelvis with contrast (CPT® 74177) is not routinely indicated in the initial metastatic staging of pediatric OS, but can be approved in the following situations:
 - Evaluation of inconclusive PET findings
 - Primary site of abdomen or pelvis

Osteogenic Sarcoma Treatment Response

Most OS patients undergo restaging after 10-12 weeks of neoadjuvant chemotherapy prior to local control surgery to confirm the absence of progressive disease prior to the extended break necessary for postoperative healing.

- Restaging at this time point should include:
 - MRI without and with contrast of primary site
 - CT Chest with (CPT® 71260) or without contrast (CPT® 71250)
 - Whole body PET/CT (CPT® 78816) or bone scan (See PEDONC-1.3)

- Following local control surgery, the following imaging guidelines should be used until the end of planned chemotherapy:
 - MRI without and with contrast of primary site ~6 weeks after surgical procedure and at the end of planned chemotherapy
 - Plain X-rays of the primary site and chest every 2 months
 - CT Chest (with or without contrast, as requested):
 - Measurable pulmonary metastases: every 6 weeks and at the end of planned chemotherapy
 - No measurable pulmonary metastases: every 4 months and at the end of planned chemotherapy
 - Bone scan (See PEDONC-1.3) every 4 months and at the end of planned chemotherapy
• Whole body PET/CT can be used in place of bone scan, if positive for distant bone metastases at initial diagnosis

✓ Patients with metastatic disease do not routinely undergo local control surgery unless metastatic disease has resolved with chemotherapy.
 o CT Chest with (CPT® 71260) or without contrast (CPT® 71250) can be performed every 2 cycles during treatment and at the end of planned chemotherapy
 o MRI without and with contrast of primary site can be performed every 2 cycles during treatment and at the end of planned chemotherapy
 o If previously positive for bony metastases, whole body PET/CT (CPT® 78816) or bone scan (See PEDONC-1.3) every 2 cycles during treatment and at the end of planned chemotherapy
 o Imaging may be indicated more frequently around the time of surgical resection of primary or metastatic lesions to assess for resectability

✓ PET is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET imaging may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.

Osteogenic Sarcoma Surveillance Imaging:
✓ Appendicular bone primary tumor site:
 o Plain X-rays of the primary tumor site should be completed every 3 months for 1 year, then every 6 months for 2 years, then annually for 2 years after completion of all therapy
 o MRI is not routinely indicated for surveillance imaging of the primary site but should be approved for the following:
 • To clarify inconclusive findings on plain X-ray
 • To evaluate significant pain symptoms suggestive of primary site recurrence

✓ Axial bone primary tumor site:
 o MRI without and with contrast of the primary tumor site can be approved every 3 months for 1 year, then every 6 months for 2 years, then annually for 2 years after completion of all therapy

✓ Metastatic disease surveillance:
 o Patients with localized OS: CT Chest with (CPT® 71260) or without contrast (CPT® 71250) every 3 months for 1 year then every 6 months for 1 year after completion of all therapy
 • Chest X-ray should be used for pulmonary recurrence surveillance after 24 months, and CT Chest can be approved to clarify inconclusive CXR findings
 o Patients with metastatic or recurrent OS: CT Chest with (CPT® 71260) or without contrast (CPT® 71250) every 3 months for 1 year, then every 6 months for 2 years, then annually for 2 years after completion of all therapy
- Nuclear bone scan (See PEDONC-1.3) should be used for evaluation of distant bony metastases every 3 months for 1 year, then every 6 months for 2 years, then annually for 2 years after completion of all therapy
- PET/CT has no established role for asymptomatic surveillance of OS, but can be approved in the following circumstances:
 - Conventional imaging reveals findings that are inconclusive or suspicious for recurrence and PET avidity will determine whether biopsy or continued observation is appropriate
 - Rare circumstances where obvious clinical symptoms show strong evidence suggesting recurrence and PET would replace conventional imaging modalities
 - Restaging after biopsy-confirmed recurrence
 - These requests will be forwarded for Medical Director review.

PEDONC-9.4 Ewing Sarcoma and Primitive Neuroectodermal Tumors (ESFT)

ESFT Initial Staging

- All bone tumors should be evaluated by plain X-ray prior to any advanced imaging
- ESFT can also occur in the soft tissues, Soft tissue masses without bony involvement that are ill-defined or non-discrete should be evaluated by limited ultrasound prior to any advanced imaging.
- MRI without and with contrast is the preferred primary site imaging
 - CT, contrast as requested, can be approved if there is a contraindication to MRI or if requested after evaluation by the operating surgeon to clarify inconclusive MRI findings for preoperative planning
 - MRI Chest without and with contrast is indicated for chest wall primary tumors, in addition to the CT Chest for pulmonary metastasis detection
 - MRA and/or CTA may rarely be indicated for complicated surgical resections, and can be approved after evaluation by the operating surgeon to clarify inconclusive MRI findings for preoperative planning
 - Requests for CT, MRA, or CTA should be forwarded for medical director review

- CT Chest with (CPT® 71260) or without contrast (CPT® 71250) is superior to PET/CT for the detection of pulmonary mets, and is indicated in the initial workup of all suspected malignant bone tumors and should be completed prior to anesthesia exposure if possible
- Other staging imaging should be deferred until a histologic diagnosis is made, initially by biopsy, as definitive resection is performed after neoadjuvant chemotherapy
 - Bone and bone marrow metastases can occur in ESFT, and cause a significant change in treatment approach. PET/CT can replace bone scan and bone marrow biopsy in ESFT patients and is indicated in the initial staging of all ESFT patients after histologic diagnosis is established
Whole body PET/CT (CPT® 78816) is the preferred study for initial staging of ESFT

Bone scan (See PEDONC-1.3) may be substituted for PET imaging if PET not available

If PET/CT is negative for bony metastases at initial diagnosis, bone scan (See PEDONC-1.3) is preferred for asymptomatic surveillance at all-time points after completion of therapy

- CT Abdomen and Pelvis with contrast (CPT® 74177) is not routinely indicated in the initial metastatic staging of pediatric ESFT, but can be approved in the following situations:
 - Evaluation of inconclusive PET findings
 - Primary site of abdomen or pelvis

ESFT Treatment Response

All ESFT patients undergo restaging after ~12 weeks of neoadjuvant chemotherapy prior to local control surgery to confirm the absence of progressive disease prior to the extended break necessary for postoperative healing.

✓ Restaging at this time point should include:
 - MRI without and with contrast of primary site
 - CT Chest with (CPT® 71260) or without contrast (CPT® 71250)
 - Whole body PET/CT (CPT® 78816) or bone scan (See PEDONC-1.3)

✓ Following local control surgery, the following imaging guidelines should be used until the end of planned chemotherapy:
 - MRI without and with contrast of primary site 3 months after surgical procedure and at the end of planned chemotherapy
 - Plain X-rays of the primary site and chest immediately after local control then every 3 months
 - CT Chest with (CPT® 71260) or without contrast (CPT® 71250):
 - Measurable pulmonary metastases: every 6 weeks and at the end of planned chemotherapy
 - No measurable pulmonary metastases: every 3 months and at the end of planned chemotherapy
 - Whole body PET/CT (CPT® 78816) or bone scan (See PEDONC-1.3) at the end of planned chemotherapy

✓ Patients with metastatic disease do not routinely undergo local control surgery unless metastatic disease has resolved with chemotherapy.
 - CT Chest with (CPT® 71260) or without contrast (CPT® 71250) can be performed every 2 cycles during treatment and at the end of planned chemotherapy
 - MRI without and with contrast of primary site can be performed every 2 cycles during treatment and at the end of planned chemotherapy
If previously positive for bony metastases, whole body PET/CT (CPT® 78816) or bone scan (See PEDONC-1.3) every 2 cycles during treatment and at the end of planned chemotherapy
Imaging may be indicated more frequently around the time of surgical resection of primary or metastatic lesions to assess for resectability

PET is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.

ESFT Surveillance Imaging:

Primary tumor site:
- Appendicular bone primary site: Plain X-rays of the primary tumor site should be completed every 3 months for 2 years, then every 6 months for 3 years, then annually for an additional 5 years after completion of all therapy
 - MRI is not routinely indicated for surveillance imaging of these primary sites after completion of chemotherapy but should be approved for the following:
 - To clarify inconclusive findings on plain X-ray
 - To evaluate significant pain symptoms suggestive of primary site recurrence
- Axial bone or any soft tissue primary site: CT with contrast or MRI without and with contrast of the primary tumor site can be approved every 3 months for 2 years, then every 6 months for 3 years, then annually for an additional 5 years after completion of all therapy

Metastatic disease surveillance:
- Patients with localized ESFT: Chest X-ray should be completed every 3 months for 2 years, then every 6 months for 3 years, then annually for an additional 5 years after completion of all therapy
 - CT Chest is only indicated to evaluate abnormal CXR findings or pulmonary or chest wall symptoms
- Patients with metastatic or recurrent ESFT: CT Chest with (CPT® 71260) or without contrast (CPT® 71250) can be approved every 3 months for 2 years, then every 6 months for 3 years, then annually for an additional 5 years after completion of all therapy
- Nuclear bone scan (See PEDONC-1.3) should be used for evaluation of distant bony metastases every 3 months for 2 years, then every 6 months for 3 years, then annually for an additional 5 years after completion of all therapy
- PET/CT has no established role for asymptomatic surveillance of ESFT, but can be approved in the following circumstances:
 - Conventional imaging reveals findings that are inconclusive or suspicious for recurrence and PET avidity will determine whether biopsy or continued observation is appropriate
• Rare circumstances where obvious clinical symptoms show strong evidence suggesting recurrence and PET would replace conventional imaging modalities
• Restaging after biopsy-confirmed recurrence
• These requests will be forwarded for Medical Director review.

References – Bone Tumors

Malignant pediatric germ cell tumors commonly include one of four histologic subtypes (yolk sac tumor, choriocarcinoma, embryonal carcinoma, or mixed histology), but the overall treatment strategies are similar for all malignant germ cell tumors. Tumors can occur in testicular, ovarian or extragonadal primary locations.

This section applies to primary germ cell tumors occurring outside the central nervous system in children age ≤15 years at the time of initial diagnosis. For patients age >15 years at diagnosis, overall prognosis is inferior and these patients should be imaged according to adult guidelines in: **ONC-20~Testicular and Nonepithelial Ovarian (Germ Cell) Cancer**.

Sex cord stromal tumors (granulosa cell, theca, Sertoli, and Leydig tumors) are rare in pediatrics and should be imaged according to adult guidelines in **ONC-20~Testicular and Nonepithelial Ovarian (Germ Cell) Cancer**.

For CNS Germ Cell Tumors, using imaging guidelines in: **PEDONC-4.7 CNS Germinomas and Non-Germinomatous Germ Cell Tumors (NGGCT)**.

Pediatric GCT Initial Staging

- Ovarian, testicular, and abdominal extragonadal GCT should have ultrasound and tumor markers (AFP, β-hCG) as initial evaluation
 - Mediastinal primary tumors should be evaluated by CT Chest with contrast
 - Ovarian masses that are <10 cm in size, have no visible solid component on ultrasound, and have normal tumor markers are almost universally benign and advanced imaging is not necessary unless ultrasound is insufficient for immediate preoperative planning.

- Once a primary mass suspected to be GCT is discovered, initial staging with CT Abdomen/Pelvis with contrast (CPT®74177) is indicated prior to histologic confirmation
 - The degree of abdominal exploration and node sampling necessary for adequate staging is determined in part by imaging findings and is required for preoperative planning
 - Testicular primary tumors can defer abdominal imaging until after histologic confirmation at the discretion of the operating surgeon
 - MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) can be approved to clarify inconclusive CT findings or for patients with a known contraindication to CT contrast
CT Chest with contrast (CPT®71260) is indicated in the initial workup of all pediatric GCT and should be completed prior to anesthesia exposure if possible.

MRI Brain without and with contrast (CPT®70553) can be approved for patients with symptoms suggesting CNS metastases.

Nuclear Bone scan (See PEDONC-1.3) should be used for initial evaluation of bony metastases in patients with systemic symptoms or bone pain.

There has been no published evidence to date supporting the routine use of PET/CT in the evaluation of pediatric GCT.

Additionally, PET has been found to have similar efficacy to CT imaging in initial staging of adults with non-seminomatous GCT (the majority of pediatric GCT are non-seminomatous).

Pediatric GCT Treatment Response

Patients with localized GCT are often cured with surgery alone and do not receive adjuvant therapy. These patients should be imaged using surveillance guidelines after surgery is completed.

Patients receiving adjuvant chemotherapy are usually treated with 4-6 cycles of combination chemotherapy.

The primary method of response assessment is by tumor marker decrease.

For patients with disease not completely resected at initial diagnosis, repeat imaging with CT Chest/Abdomen/Pelvis (CPT®71260 and CPT®74177) with contrast can be approved every 2 cycles (~every 6 weeks).

CT imaging may be indicated more frequently to assess for surgical resectability in patients who have received more than 4 cycles of chemotherapy.

CT Chest/Abdomen/Pelvis with contrast (CPT®71260 and CPT®74177) is indicated at the end of planned chemotherapy or following neoadjuvant chemotherapy for initially unresectable tumors.

Imaging of any metastatic sites should be approved at the end of planned therapy with the same modality used during initial staging.

PET as a marker of treatment response has been shown not to be predictive of patient outcomes in GCT and should not be approved.

Suspicious lesions seen on conventional imaging should be biopsied to confirm active disease.

Alternatively, a short-interval CT study can be approved if the relapse risk is determined to be low by the treating physician and biopsy would cause unnecessary morbidity for the patient.
Pediatric GCT Surveillance Imaging
The primary method of surveillance in pediatric GCT is frequent assessment of serum tumor markers

- CT Chest/Abdomen/Pelvis with contrast (CPT®71260 and CPT®74177) should be approved for any clinically significant rise in tumor markers or symptoms suggesting recurrent disease

- CT Abdomen/Pelvis with contrast (CPT®74177) can be approved every 3 months for 1 year then every 6 months for 1 year after completion of all therapy

- Chest X-ray should be completed every 3 months for 1 year then every 6 months for 1 year after completion of all therapy, then annually until 5 years from the end of therapy
 - CT Chest is only indicated to evaluate abnormal CXR findings
 - **Exception:** patients with pulmonary metastases at the time of diagnosis can have CT Chest with contrast (CPT®71260) approved for surveillance every 3 months for 1 year then every 6 months for 1 year after completion of all therapy. Surveillance after 24 months should use CXR.

- Patients with brain or bone metastases should have surveillance imaging on the same schedule as the primary site imaging with the same modality used during initial staging.

References – Germ Cell Tumors
PEDONC-11~PEDIATRIC LIVER TUMORS

<table>
<thead>
<tr>
<th>PEDONC 11</th>
<th>PEDIATRIC LIVER TUMORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 – GENERAL REMARKS</td>
<td>... 113</td>
</tr>
<tr>
<td>11.2 – HEPATOBLASTOMA</td>
<td>... 113</td>
</tr>
<tr>
<td>11.3 – PEDIATRIC HEPATOCELLULAR CARCINOMA</td>
<td>.. 115</td>
</tr>
</tbody>
</table>
PEDONC-11.1 General Remarks

NOTE: Some payors consider PET imaging to be experimental for the treatment of hepatobiliary tumors, and those coverage policies may supersede the recommendations for PET imaging in this section.

Pediatric liver tumors primarily include hepatoblastoma and hepatocellular carcinoma, but hepatic germ cell tumors and primary hepatic sarcomas occur with some frequency. Tumor markers are useful for initial evaluation as well as treatment response, particularly in hepatoblastoma.

Primary hepatic germ cell tumors should follow imaging guidelines in: **PEDONC-10 Pediatric Germ Cell Tumors.**

Primary hepatic sarcomas should follow imaging guidelines in: **PEDONC-8.3 Nonrhabdomyosarcoma Soft Tissue Sarcomas.**

Imaging requests relating to liver transplant surgery and surveillance should follow guidelines in section **AB-42~Transplant (Liver).**

PEDONC-11.2 Hepatoblastoma

Hepatoblastoma Initial Staging
Most suspected liver tumors will have ultrasound and tumor markers (AFP, β-hCG, CEA) as initial evaluation.

✔ Ultrasound may be approved even after MRI or CT imaging in order to allow evaluation for tumor thrombus

✔ Once a primary liver mass is discovered, definitive imaging is indicated prior to histologic diagnosis, and may involve any of the following:
 o CT Abdomen/Pelvis with contrast (CPT® 74177)
 o Noncontrast imaging is not indicated due to the increased radiation exposure and limited additive benefit
 o MRI Abdomen and Pelvis without and with contrast (CPT® 74183 and CPT® 72197)
 o Some tumors may require both MRI and CT during initial evaluation
 o MRA (CPT® 74185) or CTA (CPT® 74175) Abdomen are often indicated to evaluate vascular invasion

✔ CT Chest with (CPT® 71260) or without contrast (CPT® 71250) is indicated in the initial workup of all pediatric liver tumors and should be completed prior to anesthesia exposure if possible

✔ MRI Brain without and with contrast (CPT® 70553) can be approved only for patients with symptoms suggesting CNS metastases
Bone scan (See PEDONC-1.3) should be used for initial evaluation of bony metastases only in patients with systemic symptoms or bone pain.

There has been no published evidence to date supporting the routine use of PET/CT imaging in the evaluation of pediatric hepatoblastoma.

- PET/CT should only be considered in very rare circumstances for preoperative planning when MRI and CT scans are insufficient for surgical decision making.
- PET/CT should not be approved in lieu of biopsy of suspicious lesions.
- These requests will be forwarded for Medical Director review.

Hepatoblastoma Treatment Response

Patients with localized hepatoblastoma of pure fetal histology are often cured with surgery alone and do not receive adjuvant therapy. These patients should be imaged using surveillance guidelines after surgery is completed.

Patients receiving adjuvant chemotherapy are usually treated with 2-8 cycles of combination chemotherapy. Tumor marker decrease is important in response assessment but does not eliminate the need for advanced imaging in patients with unresected hepatoblastoma.

For patients with disease not completely resected at initial diagnosis, the following can be approved every 2 cycles (~6 weeks) and at the end of planned therapy for all patients:

- CT Chest with (CPT® 71260) or without contrast (CPT® 71250)
- CT Abdomen/Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197)
 - While the majority of patients will require pelvis imaging at all time points, pelvis imaging may be omitted at the discretion of the ordering physician based on the patient’s specific clinical situation
 - MRA (CPT®74185) or CTA (CPT®74175) Abdomen are often indicated to evaluate vascular invasion
- Imaging of any metastatic sites with the same modality used during initial staging

Imaging may be indicated more frequently to assess for surgical resectability in patients who have received more than 4 cycles of chemotherapy.

Abdominal ultrasound is indicated if tumor thrombus was detected at initial diagnosis.

- If no tumor thrombus was present, continued ultrasound evaluations are not indicated without a specific reason documented in the clinical records

PET/CT should only be considered in very rare circumstances for preoperative planning when MRI and CT scans are insufficient for surgical decision making.

- PET/CT should not be approved in lieu of biopsy of suspicious lesions.
- These requests will be forwarded for Medical Director review.
Hepatoblastoma Surveillance Imaging
The primary method of surveillance in hepatoblastoma is frequent assessment of serum tumor markers (primarily AFP).

✓ No specific imaging is indicated for surveillance in patients with an AFP of >100 ng/mL at diagnosis or recurrence.
 o CT Chest/Abdomen with contrast (CPT®71260 and CPT®74160) can be approved for any clinically significant rise in tumor markers or symptoms suggesting recurrent disease

✓ For patients with AFP ≤100 ng/mL at diagnosis or recurrence, the following imaging is appropriate:
 o CT Abdomen with contrast (CPT®74160) should be completed every 3 months for 2 years then every 4 months for 2 years after completion of all therapy
 o Chest X-ray or CT Chest with contrast (CPT®71260) should be completed every 3 months for 2 years then every 4 months for 2 years after completion of all therapy
 o Patients with brain or bone metastases should have surveillance imaging on the same schedule as the primary site imaging with the same modality used during initial staging.

✓ PET/CT has no documented role in the surveillance evaluation of pediatric hepatoblastoma

PEDONC-11.3 Pediatric Hepatocellular Carcinoma
Pediatric HCC Initial Staging
Most suspected liver tumors will have ultrasound and tumor markers (AFP, β-hCG, CEA) as initial evaluation.

✓ Ultrasound may be approved even after MRI or CT imaging in order to allow evaluation for tumor thrombus.

✓ Once a primary liver mass is discovered, definitive imaging is indicated prior to histologic diagnosis, and may involve any of the following:
 o CT Abdomen/Pelvis with contrast (CPT®74177)
 o MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197)
 o Some tumors may require both MRI and CT during initial evaluation
 o MRA (CPT®74185) or CTA (CPT®74175) Abdomen are often indicated to evaluate vascular invasion

✓ CT Chest with (CPT®71260) or without contrast (CPT®71250) is indicated in the initial workup of all pediatric liver tumors and should be completed prior to anesthesia exposure if possible

✓ MRI Brain without and with contrast (CPT®70553) can be approved only for patients with symptoms suggesting CNS metastases
✓ Nuclear bone scan (See PEDONC-1.3) should be used for initial evaluation of bony metastases only in patients with systemic symptoms or bone pain

✓ PET/CT should only be considered in very rare circumstances for preoperative planning when MRI and CT are insufficient for surgical decision making.
 o PET/CT should not be approved in lieu of biopsy of suspicious lesions
 o These requests require Medical Director review.

Pediatric HCC Treatment Response
The majority of hepatocellular carcinoma patients are treated with surgery alone and do not receive adjuvant therapy. These patients should be imaged using surveillance guidelines after surgery is completed.

✓ For patients with disease not completely resected at initial diagnosis, the following can be approved every 2 cycles (~6 weeks) and at the end of planned therapy for all patients:
 o CT Chest with (CPT® 71260) or without contrast (CPT® 71250)
 o CT Abdomen/Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197)
 • While the majority of patients will require pelvis imaging at all time points, pelvis imaging may be omitted at the discretion of the ordering physician based on the patient’s specific clinical situation
 • MRA (CPT®74185) or CTA (CPT®74175) Abdomen are often indicated to evaluate vascular invasion
 o Imaging of any metastatic sites with the same modality used during initial staging

✓ Abdominal ultrasound is indicated if tumor thrombus was detected at initial diagnosis
 o If no tumor thrombus was present, continued ultrasound evaluations are not indicated without a specific reason documented in the clinical records

✓ PET/CT should only be considered in very rare circumstances for preoperative planning when MRI and CT scans are insufficient for surgical decision making.
 o PET/CT should not be approved in lieu of biopsy of suspicious lesions
 o These requests will be forwarded for Medical Director review.

Pediatric HCC Surveillance Imaging
✓ CT Abdomen with contrast (CPT®74160) can be completed every 3 months for 1 year then every 6 months for 1 year, then annually for 3 years after completion of all therapy

✓ Chest X-ray or CT Chest with contrast (CPT®71260) should be every 3 months for 1 year then every 6 months for 1 year, then annually for 3 years months after completion of all therapy

✓ Patients with brain or bone metastases should have surveillance imaging on the same schedule as the primary site imaging with the same modality used during initial staging.
PET/CT has no documented role in the surveillance evaluation of pediatric hepatocellular carcinoma

References – Liver Tumors

<table>
<thead>
<tr>
<th>PEDONC 12</th>
<th>RETINOBLASTOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 – GENERAL REMARKS ... 119</td>
<td></td>
</tr>
<tr>
<td>12.2 – RETINOBLASTOMA IMAGING 119</td>
<td></td>
</tr>
</tbody>
</table>
PEDONC-12.1 General Remarks
Retinoblastoma is primarily a disease of the infant and young child, and presents with leukocoria (loss of red reflex).

Detailed evaluation by a physician with significant training and/or experience in retinoblastoma (most commonly a pediatric ophthalmologist or pediatric oncologist) is indicated prior to considering advanced imaging.

Retinoblastoma can be unilateral, bilateral, or trilateral (involving the pineal gland). Extraocular spread of retinoblastoma is rare and generally confined to the brain.

PEDONC-12.2 Retinoblastoma Imaging

Retinoblastoma Initial Staging
✓ MRI Orbits (CPT® 70543) and Brain (CPT® 70553) without and with contrast can be approved in the initial workup of all patients with retinoblastoma
 ○ Brain imaging may be omitted or deferred at the discretion of the treating ophthalmologist or oncologist

✓ Spinal MRI without and with contrast (Cervical-CPT® 72156, Thoracic-CPT® 72157, Lumbar-CPT® 72158) may be approved if evidence of CNS metastasis on:
 ○ Ophthalmologic exam
 ○ MRI Brain
 ○ Lumbar CSF cytology

✓ CT should generally be avoided in retinoblastoma patients under one year of age or with family history of retinoblastoma due to substantially increased risks for secondary malignancy
 ○ CT of Chest (CPT® 71260) and MRI of Abdomen and Pelvis without and with contrast (CPT® 74183 and CPT® 72197) can be approved for patients with clinical symptoms to suggest metastatic disease

✓ Orbital CT (contrast as requested) and orbital ultrasound can be approved if ordered by the treating ophthalmologist for a specified indication

✓ Nuclear bone scan (See PEDONC-1.3) is the preferred imaging modality for patients with systemic bone pain suggestive of bony metastases

✓ PET has no documented role in the evaluation of retinoblastoma
Retinoblastoma Treatment Response

- MRI Orbits (CPT® 70543) and/or Brain (CPT® 70553) can be approved every 2 cycles (~ every 6 weeks) and at the end of planned therapy.

- For patients with metastatic disease, imaging of known positive areas using the same modality at initial staging can be approved every 2 cycles (~6-8 weeks) and at the end of planned therapy.

Retinoblastoma Surveillance

- The primary method of surveillance in retinoblastoma is examination under anesthesia (EUA), although some older children can be sufficiently evaluated by exam without anesthesia (EWA).
 - Surveillance using advanced imaging is generally not indicated for unilateral retinoblastoma after enucleation or exenteration, but can be approved for evaluation of specific clinical concerns.
 - Patients undergoing ocular salvage treatment approaches can have MRI Orbits (CPT® 70543) and Brain (CPT® 70553) approved every 6 months for 2 years following completion of therapy.

- Patients with bilateral retinoblastoma or germline mutation in RB1 are at increased risk for subsequent pineoblastoma, so MRI Brain without and with contrast (CPT® 70553) can be approved every 6 months for 5 years for the time of diagnosis with retinoblastoma.
 - Routine MRI follow up for pineal disease is not currently supported by evidence in unilateral retinoblastoma patients without germline RB1 mutations.

References - Retinoblastoma

<table>
<thead>
<tr>
<th>PEDONC 13</th>
<th>PEDIATRIC NASOPHARYNGEAL CARCINOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 – GENERAL REMARKS</td>
<td>122</td>
</tr>
<tr>
<td>13.2 – PEDIATRIC NPC IMAGING</td>
<td>122</td>
</tr>
</tbody>
</table>
PEDONC-13.1 General Remarks
Pediatric nasopharyngeal carcinoma (NPC) is rare in comparison to adult NPC but is responsible for up to 50% of nasopharyngeal cancers in children and has higher rates of aggressive type III EBV-associated histology than adult NPC.

Standard upfront treatment in pediatric NPC consists of 3-4 cycles of neoadjuvant chemotherapy followed by definitive chemoradiotherapy. Rare patients with lower stage disease may be treated with radiotherapy alone.

PEDONC-13.2 Pediatric NPC Imaging

Pediatric NPC Initial Staging
Quantitative EBV DNA PCR should be measured at initial diagnosis, as it can serve as an effective tumor marker if elevated at initial diagnosis.

✓ MRI Brain without and with contrast (CPT®70553) and MRI Neck without and with contrast (CPT®70543) is indicated in the initial staging of all pediatric NPC patients
 o CT Head without and with contrast (CPT®70470), CT Maxillofacial without and with contrast (CPT®70488) and/or CT Neck with contrast (CPT®70491) can be approved for patients with documented contraindication to MRI imaging (avoidance of sedation should not be the sole reason)
 o Skull base invasion is common in pediatric NPC and has a dramatic impact on prognosis, and is more easily recognized on MRI imaging

✓ CT Chest with contrast (CPT®71260) is indicated in initial staging of all patients

✓ Whole body PET/CT (CPT®78816) is approvable after histologic confirmation of NPC to evaluate for distant bony metastases
 o Bone scan (See PEDONC-1.3) can be used for patients when PET/CT is unavailable

Pediatric NPC Treatment Response
✓ MRI Brain without and with contrast (CPT®70553) and MRI Neck without and with contrast (CPT®70543) are indicated for response assessment at the following time points:
 o Following completion of neoadjuvant chemotherapy
 o Following completion of chemoradiotherapy

✓ CT Chest with contrast (CPT®71260) and whole body PET/CT (CPT®78816) or bone scan (See PEDONC-1.3) are indicated at the following time points:
 o Following completion of neoadjuvant chemotherapy only if positive at initial diagnosis
Following completion of chemoradiotherapy

- PET is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.

Pediatric NPC Surveillance

- MRI Brain without and with contrast (CPT® 70553) and MRI Neck without and with contrast (CPT® 70543) are indicated every 3 months for 1 year, then every 6 months for 2 years after completion of all planned therapy

- CT Chest with contrast (CPT® 71260) is indicated every 3 months for 1 year, then every 6 months for 2 years after completion of all planned therapy

- Whole body PET/CT (CPT® 78816) or bone scan (See **PEDONC-1.3**) are not indicated for routine surveillance in asymptomatic patients but can be approved in the following situations:
 - Clarification of specified inconclusive findings seen on conventional imaging (should not replace biopsy)
 - Restaging to identify sites of disease when EBV PCR levels are abnormally high and conventional imaging is negative
 - Restaging after histologically confirmed recurrence of NPC
 - These requests will be forwarded for Medical Director review.

References – Nasopharyngeal Carcinoma

<table>
<thead>
<tr>
<th>PEDONC 14 PEDIATRIC ADRENOCORTICAL CARCINOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 – GENERAL REMARKS ... 125</td>
</tr>
<tr>
<td>14.2 – PEDIATRIC ACC IMAGING ... 125</td>
</tr>
</tbody>
</table>
PEDONC-14.1 General Remarks

Pediatric Adrenocortical Carcinoma (ACC) is rare, with fewer than 25 cases diagnosed each year. Most patients are diagnosed because of virilizing symptoms or detection on screening imaging recommended for specified cancer predisposition syndromes. See: [PEDONC-2~Cancer Predisposition Syndromes & Screening Strategies](#)

PEDONC-14.2 Pediatric ACC Imaging

Pediatric ACC Initial Staging

- CT Abdomen without and with contrast (CPT®74170) or MRI Abdomen without and with contrast (CPT®74183) is indicated in the initial staging of all pediatric ACC patients

- CT Chest with contrast (CPT®71260) is indicated in initial staging of all patients

- Nuclear bone scan (See [PEDONC-1.3](#)) is indicated to evaluate for bony metastases in all patients at initial diagnosis

- PET has no documented role in the evaluation and treatment of pediatric ACC.

Pediatric ACC Treatment Response

The majority of ACC patients are treated with surgery alone and do not receive adjuvant therapy. These patients should be imaged using surveillance guidelines after surgery is completed.

- For patients treated with chemotherapy, CT Abdomen without and with contrast (CPT®74170) or MRI Abdomen without and with contrast (CPT®74183) is indicated for response assessment every 2 cycles (~6 weeks) during chemotherapy and following completion of all planned chemotherapy

- CT Chest with contrast (CPT®71260) is indicated every 2 cycles (~6 weeks) during chemotherapy and following completion of all planned chemotherapy

- Nuclear bone scan (See [PEDONC-1.3](#)) is indicated every 2 cycles (~6 weeks) during chemotherapy only if positive for distant metastases at initial diagnosis, and following completion of chemotherapy
Pediatric ACC Surveillance

- CT Abdomen without and with contrast (CPT®74170) or MRI Abdomen without and with contrast (CPT®74183) is indicated every 3 months for 2 years, then every 6 months for 3 years after completion of all planned therapy.

- Surveillance CT Chest is not indicated for patients with localized disease at diagnosis.

- For patients with metastatic ACC, CT Chest with contrast (CPT®71260) is indicated every 3 months for 2 years, then every 6 months for 3 years after completion of all planned therapy.

References – Adrenocortical Carcinoma

Pediatric melanoma is historically rare, but has a steadily rising incidence. Staging is assigned using the AJCC staging for adult melanoma.

Non-melanoma skin cancers are extremely rare in pediatric patients and established age-specific guidelines for management of these tumors do not exist.

Imaging guidelines and treatment approaches are consistent with those used for adults with melanoma and other skin cancers, and these patients should follow imaging guidelines in section ONC-5—Melanomas and Other Skin Cancers.

References – Pediatric Melanoma and Other Skin Cancers

The majority of pediatric salivary gland tumors arise in the parotid gland. Approximately 10-15% of tumors arise in the submandibular, sublingual, or minor salivary glands.

Roughly 75% of pediatric salivary gland tumors are benign, most commonly pleomorphic adenoma.

The most common malignant tumors occurring in the salivary glands are mucoepidermoid carcinoma, adenoid cystic carcinoma, acinic cell carcinoma, undifferentiated carcinoma, and rarely adenocarcinoma.

AJCC staging is used for pediatric as well as adult salivary gland tumors.

Imaging guidelines for malignant pediatric salivary gland tumors are consistent with those used for adults with salivary gland tumors, and these patients should follow imaging guidelines in section ONC-4~Salivary Gland Cancers.

References

Less than 1% of pediatric breast lesions are malignant, and advanced imaging is generally not recommended without histological confirmation of malignancy.

- Mammography has limited utility in pediatric breast mass evaluation due to the high mammographic breast density in this age group, and the risk of the radiation exposure outweighs the benefit of this modality.

- BI-RADS classification may overstate the risk of malignancy or need for biopsy in pediatric patients.

- Ultrasound (CPT®76641 and CPT®76642) is the primary modality used for evaluation of pediatric breast masses

- MRI has very limited utility in evaluation of pediatric breast masses prior to biopsy, but may be indicated in rare cases for surgical planning when ultrasound is non-diagnostic.
 - All advanced imaging requests for pediatric breast masses should be forwarded for Medical Director review.

References
<table>
<thead>
<tr>
<th>PEDONC 18</th>
<th>Pediatric Histiocytic Disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 – GENERAL REMARKS</td>
<td>...</td>
</tr>
<tr>
<td>18.2 – LANGERHANS CELL HISTIOCYTOSIS (LCH)</td>
<td>...</td>
</tr>
<tr>
<td>18.3 – HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS (HLH)</td>
<td>...</td>
</tr>
<tr>
<td>18.4 – NON-LANGERHANS CELL HISTIOCYTOSES</td>
<td>...</td>
</tr>
</tbody>
</table>
PEDONC-18~Pediatric Histiocytic Disorders

PEDONC-18.1 General Remarks
The majority of histiocytic disorders occurring in the pediatric population are either Langerhans Cell Histiocytosis (LCH) or Hemophagocytic Lymphohistiocytosis (HLH).

The Non-Langerhans cell histiocytoses encompass a variety of diseases, and have limited imaging considerations except as specified later in this section.

PEDONC-18.2 Langerhans Cell Histiocytosis (LCH)
Includes a heterogeneous group of disorders formerly known by other names, including histiocytosis X, eosinophilic granuloma, Letterer-Siwe Disease, Hand-Schuller-Christian Disease, and diffuse reticuloendotheliosis

Most common sites of involvement are skin, bones, liver, lung, and pituitary, though other sites are possible.

LCH Initial imaging studies
✓ For all patients:
 o Chest X-ray
 o Abdominal US (CPT®76700)
 o Skeletal survey
 • PET should not be used to replace skeletal survey in LCH

✓ MRI Brain without and with contrast (CPT®70553) for any of the following:
 o Headaches or visual or neurologic disturbances
 o Polyuria/polydipsia or other endocrine abnormalities
 o Skull or craniofacial (including jaw) bone involvement
 o Otorrhea or hearing loss (may substitute CT Temporal Bone if requested)
 o Other signs or symptoms suggesting intracranial involvement, including neurodegeneration syndrome

✓ CT Chest with (CPT® 71260) or without contrast (CPT® 71250) for any of the following:
 o Abnormal CXR
 o Symptoms of pulmonary involvement and normal CXR

✓ MRI Abdomen without and with contrast (CPT®74183) for any of the following:
 o Elevated liver function tests (usually >5X upper limit of normal)
 o Abnormalities seen on Abdominal ultrasound
 o CT Abdomen with contrast (CPT®74160) can be substituted if requested by ordering physician to avoid general anesthesia
MRI Spine without and with contrast (Cervical-CPT® 72156, Thoracic-CPT® 72157, Lumbar-CPT® 72158) for any of the following:
- Vertebral lesions seen on skeletal survey
- Clinical symptoms (including back pain) suggesting spinal involvement and negative skeletal survey

Whole body PET/CT (CPT® 78816) for any of the following:
- Multifocal bone involvement seen on skeletal survey
- Bone pain and negative skeletal survey
- Other clinical symptoms suggesting multisite disease

LCH Treatment Response

Patients with localized or single site disease are often treated only with local therapies or observed, and should be imaged according to surveillance guidelines

Patients receiving systemic therapy will usually undergo treatment for ~12 months. Treatment response is assessed using any modalities showing disease at initial diagnosis after ~6 weeks of treatment.
- Those with persistent measurable disease will usually be evaluated again after week 12 of therapy
 - Once PET/CT shows no remaining FDG-avid lesions, additional PET imaging is not indicated
 - As a general rule, both PET/CT and CT with contrast or MRI without and with contrast should not be approved for simultaneous treatment response evaluation without specific documentation showing that both are necessary

Following the initial phase, patients can have treatment response evaluation every ~3 months while receiving active treatment.
- Shorter interval imaging can be approved for documented signs or symptoms concerning for disease progression

All patients should have the following studies at the end of planned therapy:
- Chest X-ray
- Abdominal ultrasound (CPT® 76700)
- Skeletal survey
- Repeat of all additional imaging studies positive at initial workup (except PET)

PET is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.
LCH Surveillance Imaging:
Surveillance imaging is determined by areas of disease involvement.

- **Bone involvement**
 - Plain x-ray of involved bony areas at 6 weeks, then at 3 and 6 months after completion of therapy
 - Additional films are not necessary unless symptoms suggest new or recurrent disease
 - PET is not indicated for surveillance, but can be considered to evaluate patients with recurrent disease
 - Skull or craniofacial (including jaw) bone involvement at diagnosis are at higher risk for CNS recurrence, and should be imaged according to CNS involvement section below

- **Pulmonary involvement**
 - CXR every 6 months after completion of therapy
 - CT Chest with (CPT® 71260) or without contrast (CPT® 71250) can be approved for new abnormalities on CXR or new pulmonary symptoms with a negative CXR

- **CNS involvement**
 - CNS LCH has a particularly high rate of refractory and recurrent disease, and requires longer imaging surveillance
 - MRI Brain without and with contrast (CPT® 70553) is indicated for patients with previously documented measurable intracranial lesions at 6 weeks, 3 months, and 6 months after completion of all therapy.
 - If negative at that time, continued surveillance is indicated at 1, 2, 4, 7, and 10 years after completion of all planned therapy
 - If residual measurable intracranial lesions are present at 6 months, imaging can be repeated every 3 months until negative or unchanged on two consecutive studies, at which time the schedule in the previous bullet should begin
 - MRI Brain without and with contrast (CPT® 70553) is indicated for patients with documented hypothalamic-pituitary dysfunction at 1, 2, 4, 7, and 10 years after completion of all planned therapy
 - Intraspinal lesions are rare, but should be imaged according to the same guidelines as brain imaging using MRI without and with contrast of all involved spine levels

- **Liver involvement**
 - Persistent liver involvement is rare, and imaging after completion of LCH therapy will be highly individualized depending on degree of liver dysfunction and plans for supportive therapy or liver transplant
 - Most patients with liver involvement will receive surveillance Abdominal ultrasound (CPT® 76700) every 6 months
PEDONC-18.3 Hemophagocytic Lymphohistiocytosis (HLH)

Advanced imaging requests for HLH should be forwarded for medical director review.

There are no standard imaging studies required for the diagnosis and initial evaluation of HLH. Advanced imaging studies may be necessary to assess organ dysfunction as HLH commonly affects the liver, spleen, and bone marrow, and less commonly the kidneys, lungs, and brain.

- Common studies that may be indicated in the initial evaluation of HLH include:
 - Abdominal ultrasound (CPT®76700)
 - CT Abdomen and/or Pelvis (contrast as requested)
 - MRI Abdomen (CPT®74183) and/or Pelvis (CPT®72197) without and with contrast
 - CXR
 - CT Chest with contrast (CPT®71260)
 - MRI Brain without and with contrast (CPT®70553)

It is not required to perform ultrasound or plain film in a stepwise fashion if CT or MRI is planned as patients with HLH can deteriorate rapidly.

- There is no established standard role for PET in the diagnosis or treatment response evaluation of HLH
 - Secondary HLH is very difficult to treat if the primary cause is not concurrently treated
 - In these cases, if conventional imaging has been completed and is unrevealing, whole body PET/CT (CPT®78816) can be considered for the purpose of identifying a site for tissue diagnosis of a primary source of infection or malignancy
 - If a malignancy is identified as the inciting factor for HLH, additional imaging decisions for that malignancy should be based on the appropriate diagnosis-specific guidelines.
PEDONC-18.4 Non-Langerhans Cell Histiocytoses
Includes diagnoses such as juvenile xanthogranuloma (JXG), sinus histiocytosis with lymphadenopathy (Rosai-Dorfman disease, RDD), and Erdheim-Chester disease (ECD).
In general, these are localized cutaneous or nodal disease without need for regular advanced imaging, but important exceptions are listed in this section.

Juvenile Xanthogranuloma (JXG)
- Generally involves only skin or cervical nodes, and involutes spontaneously, imaging of involved nodal areas may be appropriate using CT with contrast of appropriate area
- Systemic JXG is associated with multiorgan involvement and imaging studies may include:
 - MRI Brain (CPT®70553) and/or Orbits (CPT®70543) without and with contrast
 - CT Neck (CPT®70491), Chest (CPT®71260), and/or Abdomen (CPT®74160) with contrast
- There is no established role for PET in the diagnosis or treatment of JXG

Rosai-Dorfman Disease (RDD)
Characterized by bulky adenopathy (usually cervical) with frequent systemic involvement
Appropriate imaging studies may include:
- MRI Brain (CPT®70553) and/or Orbits (CPT®70543) without and with contrast
- Nuclear bone scan (See PEDONC-1.3)
- CT Neck (CPT®70491), Chest (CPT®71260) and/or Abdomen/Pelvis (CPT®74177) with contrast
- There is no established role for PET in the diagnosis or treatment of RDD, but whole body PET/CT(CPT®78816) may be approved if PET/CT will provide critical information for major treatment decision making that cannot be obtained using conventional imaging or biopsy.
 - Because of the paucity of evidence for PET in RDD, PET/CT should not be used to replace tissue confirmation for any clinical scenario in RDD.
 - These requests will be forwarded for Medical Director review.
- There is no established role for routine surveillance imaging of asymptomatic patients after treatment for RDD, but CT with contrast can be approved for evaluation of new or worsening clinical symptoms suggesting recurrent disease
Erdheim-Chester Disease (ECD)

An aggressive histiocytic disorder with overall poor prognosis that is characterized by long bone involvement with frequent spread to multiple organs

ECD Initial imaging studies

Appropriate imaging studies at initial diagnosis may include:

- MRI Brain (CPT®70553) and/or Orbits (CPT®70543) without and with contrast
- Nuclear bone scan (See PEDONC-1.3)
- Whole body PET/CT (CPT®78816)
- CT Neck (CPT®70491), Chest (CPT®71260) and/or Abdomen/Pelvis (CPT®74177) with contrast
- CTA or MRA of Chest (CPT®72175 or CPT®71555) or Abdomen (CPT®74175 or CPT®74185) to evaluate vascular tree involvement
- Cardiac MRI without and with contrast (CPT®75561)

ECD Treatment Response

- Most patients will receive systemic therapy. Treatment response imaging can be approved every 3 months during active treatment using any modalities showing disease at initial diagnosis, including PET/CT.
 - Once PET/CT shows no remaining FDG-avid lesions, additional PET imaging is not indicated unless conventional imaging studies are inconclusive and acute treatment decisions will be made based on PET results. These requests will be forwarded for Medical Director review.

ECD Surveillance Imaging

- Surveillance imaging can be approved every 3 months for the first year after completion of treatment, then every 6 months using any modalities showing disease at initial diagnosis.
- PET/CT is not supported for routine surveillance of ECD, but can be approved if conventional imaging is inconclusive for suspected recurrence. These requests will be forwarded for Medical Director review.

References – Histiocytic Disorders

PEDONC 19 Long Term Pediatric Cancer Survivors

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1 – GENERAL REMARKS</td>
<td>139</td>
</tr>
<tr>
<td>19.2 – CARDIOTOXICITY AND ECHOCARDIOGRAPHY</td>
<td>140</td>
</tr>
<tr>
<td>19.3 – SECOND MALIGNANT NEOPLASMS (SMN)</td>
<td>141</td>
</tr>
<tr>
<td>19.4 – OSTEONECROSIS IN LONG TERM CANCER SURVIVORS</td>
<td>143</td>
</tr>
</tbody>
</table>
PEDONC-19~Long Term Pediatric Cancer Survivors

PEDONC-19.1 General Remarks
This section applies to patients who have passed the end of the surveillance imaging period for their specific cancer, or 5 years after completion of therapy, whichever occurs first.

As these are long term survivors, many patients falling under this guideline section will have reached adult age. However, these guidelines relate specifically to late effects of childhood cancer treatment and should be applied to all long term childhood cancer survivors regardless of current age.

The Children’s Oncology Group has published comprehensive guidelines for the management of long-term childhood cancer survivors, and these are available at: http://www.survivorshipguidelines.org.

A summary of cancer treatment should be available for all patients in this category and should generally include, at minimum:

✓ Type of cancer and stage
✓ Dates of diagnosis, recurrence, cancer-related surgeries, beginning and end dates of chemotherapy, radiotherapy, and/or stem cell transplant
✓ Protocol number used for treatment and cumulative chemotherapy drug dose exposures
✓ Cumulative radiation dose, fraction number, modality, and field exposure

Annual detailed history and complete physical examination is a critical component of cancer survivorship care and along with laboratory testing serves as the primary method of screening for the majority of late effects.

✓ Advanced imaging for asymptomatic screening is not routinely indicated except as specified in this section.
PEDONC-19.2 Cardiotoxicity and Echocardiography

Exposure to cardiotoxic anthracycline chemotherapy agents is common in pediatric oncology due to the high success rate of this drug class in the treatment of pediatric cancers. Screening echocardiography (CPT® 93306, 93307, or 93308) for life is indicated after exposure to anthracycline chemotherapy or cardiac exposure to radiotherapy.

Drugs include the following:
- Doxorubicin
- Daunorubicin
- Idarubicin
- Epirubicin
- Mitoxantrone

Cardiac risk is due to the age of the patient at the time of administration and the cumulative drug exposure expressed as doxorubicin equivalent mg/m².

- Patients **age <1 year** at time of first exposure:
 - Echocardiography **every year** for any cardiac radiotherapy exposure or ≥200 mg/m² cumulative doxorubicin equivalent exposure.
 - Echocardiography **every 2 years** for <200 mg/m² cumulative doxorubicin equivalent exposure and no cardiac radiotherapy exposure.

- Patients **ages 1-4 years** at time of first exposure:
 - Echocardiography **every year** for any cardiac radiotherapy exposure or ≥300 mg/m² cumulative doxorubicin equivalent exposure.
 - Echocardiography **every 2 years** for 100-300 mg/m² cumulative doxorubicin equivalent exposure and no cardiac radiotherapy exposure.
 - Echocardiography **every 5 years** for <100 mg/m² cumulative doxorubicin equivalent exposure and no cardiac radiotherapy exposure.

- Patients **age ≥5 years** at time of first exposure:
 - Echocardiography **every year** for ≥300 mg/m² cumulative doxorubicin equivalent exposure regardless of cardiac radiotherapy exposure.
 - Echocardiography **every 2 years** for 200-300 mg/m² cumulative doxorubicin equivalent exposure and no cardiac radiotherapy exposure.
 - Echocardiography **every 2 years** for <300 mg/m² cumulative doxorubicin equivalent exposure and cardiac radiotherapy exposure.
 - Echocardiography **every 5 years** for <200 mg/m² cumulative doxorubicin equivalent exposure and no cardiac radiotherapy exposure.

- Patients of **any age with abnormal ventricular function**:
 - Echocardiography **every year**

- Stress echocardiography is not indicated as a screening study for anthracyclines cardiotoxicity in the absence of coronary artery disease symptoms. See **CD-1.4** for imaging guidelines.
PEDONC-19.3 Second Malignant Neoplasms (SMN)

SMN—Breast Cancer

Clinical breast exam every 6 months supplemented with:

- Annual Breast MRI (CPT®77059) and annual mammogram is recommended beginning at age 25 or 8 years after completion of radiotherapy (whichever occurs later) for patients receiving a cumulative radiation exposure of ≥ 20 Gy in the following fields:
 - Chest (thorax)
 - Whole lung
 - Mediastinal
 - Axilla
 - Mini-mantle, mantle, or extended mantle
 - Total (TLI) or subtotal (SLTI) lymphoid irradiation
 - Total body irradiation (TBI)

- Annual Breast MRI (CPT®77059) and annual mammogram is recommended beginning at age 25 or 8 years after completion of radiotherapy (whichever occurs later) for patients receiving ≥ 12 Gy of whole lung radiation for treatment of Wilms tumor

SMN—CNS Tumors

These are associated with radiation exposure to the brain and with neurofibromatosis.

- Routine surveillance of completely asymptomatic patients with normal neurologic exams is not supported by evidence

- MRI Brain without and with contrast (CPT®70553) should be approved if requested for any patient with history of brain radiotherapy and new neurologic symptoms including simple headache

- MRI Cervical (CPT®72156), Thoracic (CPT®72157), and Lumbar Spine (CPT®72158) without and with contrast should be approved if requested for any patient with history of spine radiotherapy and new neurologic symptoms including change in quality of pain
 - MRI Spine can be performed with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) if being performed immediately following a contrast-enhanced MRI Brain

- For patients with history of brain radiotherapy and persistent neurologic symptoms, annual MRI Brain without and with contrast (CPT®70553) can be approved
✓ For patients with history of spine radiotherapy and persistent neurologic symptoms, annual MRI Cervical (CPT® 72156), Thoracic (CPT® 72157), and Lumbar Spine (CPT® 72158) without and with contrast can be approved
 o MRI Spine can be performed with contrast only (Cervical-CPT® 72142, Thoracic-CPT® 72147, Lumbar-CPT® 72149) if being performed immediately following a contrast-enhanced MRI Brain

SMN—Colorectal Cancer

Colonoscopy is recommended every 5 years beginning at age 35 or 10 years after radiation exposure (whichever is later) for patients with ≥30 Gy radiation exposure to the following fields:

 o Thoracic, Lumbar, Sacral, or Whole Spine
 o Extended mantle
 o Hepatic, Renal, Spleen, RUQ or LUQ
 o Paraortic or Flank/Hemiabdomen
 o Whole Abdomen
 o Inverted Y
 o Pelvic
 o Vaginal
 o Prostate or Bladder
 o Iliac, Inguinal, or Femoral
 o Total (TLI) or subtotal (SLTI) lymphoid irradiation
 o Total body irradiation (TBI)

Colonoscopy is also recommended every 5 years beginning at age 35 or 10 years after radiation exposure (whichever is later) for patients with:

 o Personal history of ulcerative colitis, GI malignancy, adenomatous polyps, or hepatoblastoma
 o Familial polyposis
 o Family history of colorectal cancer or polyps in a first degree (parent or sibling) relative

While the American Cancer Society recently added computed tomographic colonography (CTC) (AKA “Virtual Colonoscopy”) as an acceptable option for colorectal cancer screening of average-risk adults, the National Comprehensive Cancer Network and United States Preventive Services Task Force concluded that data was too premature to warrant its use in screening. **Colonoscopy remains the preferred screening modality for survivors at highest risk of colorectal cancer.**
PEDONC-19.4 Osteonecrosis in Long Term Cancer Survivors

Osteonecrosis is associated with chemotherapy and radiation exposure during treatment for ALL, NHL, and allogeneic HSCT in pediatrics. Osteonecrosis occurs primarily in hips, knees, and ankles. Osteoradionecrosis of the jaw can occur in patients receiving radiotherapy to the mandible or maxilla; those receiving ≥40 Gy are at highest risk. Although unusual, it can also occur in any bone without symptoms. It is rare in other disease types.

- Plain films of symptomatic areas are indicated prior to advanced imaging.
- Routine bone density screening using DEXA or Quantitative CT screening has not been well normalized in the pediatric population, but imaging can be approved for those with symptoms to suggest bone density issues
 - DEXA or Quantitative CT screening is generally not recommended until age 18 unless a specific intervention will be planned based on the imaging results.
- Serial advanced imaging is not indicated in osteonecrosis without specific documentation regarding how the advanced imaging will change current patient management
 - When advanced imaging is necessary for acute management decisions, MRI without contrast of the affected joint(s) can be approved.
 - Surveillance imaging of asymptomatic patients to detect osteonecrosis has not been shown to impact patient outcomes, and it is not standard to alter treatment based on imaging findings alone without symptoms.
 - Follow up MRI of incidentally discovered ON findings in asymptomatic patients has not been shown to impact patient outcomes and is not necessary
- See PEDONC-3.2 Acute Lymphoblastic Leukemia (ALL) for information on imaging osteonecrosis in ALL patients during active treatment.

References

